

SILICON PHOTODIODE VTD34FSMH

(BPW 34F INDUSTRY FQUIVALENT)

PRELIMINARY ENGINEERING DATA SHEET

FEATURES

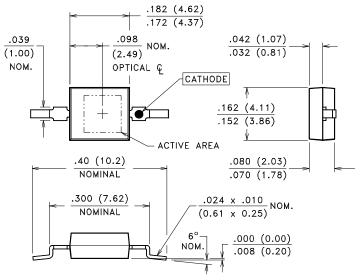
- Infrared transmiting package
- High sensitivity
- Low capacitance
- Fast response
- Low noise

PRODUCT DESCRIPTION

Planar silicon photodiode in an infrared transmitting, visible blocking molded plastic package.

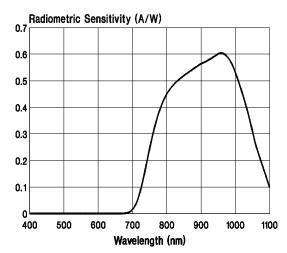
This P on N photodiode is designed to provide excellent sensitivity at low levels of irradiance. Linearity is assured by its high shunt impedance and low series resistance.

Due to their low junction capacitance, these devices exhibit fast response, even with relatively high load resistances.


ELECTRO-OPTICAL CHARACTERISTICS @ 25°C

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNITS
RESPONSIVITY @ 0.5 mW/cm ² , 940 nm	Re	15			μΑ
DARK CURRENT @ V _R = 10 V	ΙD			30	nA
REVERSE BREAKDOWN VOLTAGE @ 100 μA	VBR	40			Volts
JUNCTION CAPACITANCE @ 1 MHz, V _R = 3 V	СJ			80	pF
RISE / FALL TIME @ 1 k Ω LOAD, V _R = 10 V, 833 nm	t _R / t _F		50		nsec
ACCEPTANCE ANGLE (BETWEEN 50% RESPONSE)	θ1/2		±50		Degrees

PACKAGE DIMENSIONS inch (mm)


RoHS Compliant

$\begin{array}{ccc} \textbf{CASE 22} & \textbf{MINI-DIP (SURFACE MOUNT)} \\ \text{CHIP SIZE: } .120 \times .120 & (3.05 \times 3.05) \\ \text{EXPOSED ACTIVE AREA: } .0115 \text{ in}^2 & (7.42 \text{ mm}^2) \end{array}$

Spectral Response

GENERAL CHARACTERISTICS

PARAMETER	SYMBOL	TYPICAL RATING	UNITS
OPEN CIRCUIT VOLTAGE @ 0.5 mW/cm ² , 940 nm	Voc	350	mV
PEAK SPECTRAL RESPONSE @ 25°C	λpk	940	nm
SPECTRAL APPLICATION RANGE	λRANGE	725 - 1150	nm
RADIOMETRIC SENSITIVITY @ PEAK, 25°C	SRPK	0.60	A/W
NOISE EQUIVALENT POWER	NEP	4.8 x 10 ⁻¹⁴	W /√Hz
SPECIFIC DETECTIVITY	D*	5.7 x 10 ¹²	cm√Hz/W
TEMPERATURE COEFFICIENT OPEN CIRCUIT VOLTAGE @ 2850 K SOURCE DARK CURRENT	TC Voc TC Ip	- 2.0 +15.0	mV / °C % / °C
TEMPERATURE RANGE OPERATING STORAGE	To Ts	– 20 to +80 – 20 to +80	°C °C

Specifications subject to change without prior notice. Information supplied by Excelitas Technologies is believed to be reliable, however, no responsibility is assumed for possible inaccuracies or omissions. The user should determine the suitability of this product in his own application. No patent rights are granted to any devices or circuits described herein.