# **74AUP2G00**

# Low-power dual 2-input NAND gate Rev. 7 — 8 June 2012

**Product data sheet** 

#### **General description** 1.

The 74AUP2G00 provides dual 2-input NAND function.

Schmitt trigger action at all inputs makes the circuit tolerant to slower input rise and fall times across the entire V<sub>CC</sub> range from 0.8 V to 3.6 V.

This device ensures a very low static and dynamic power consumption across the entire V<sub>CC</sub> range from 0.8 V to 3.6 V.

This device is fully specified for partial power-down applications using I<sub>OFF</sub>. The I<sub>OFF</sub> circuitry disables the output, preventing a damaging backflow current through the device when it is powered down.

#### 2. Features and benefits

- Wide supply voltage range from 0.8 V to 3.6 V
- High noise immunity
- Complies with JEDEC standards:
  - ◆ JESD8-12 (0.8 V to 1.3 V)
  - ◆ JESD8-11 (0.9 V to 1.65 V)
  - JESD8-7 (1.2 V to 1.95 V)
  - ◆ JESD8-5 (1.8 V to 2.7 V)
  - ◆ JESD8-B (2.7 V to 3.6 V)
- ESD protection:
  - HBM JESD22-A114F Class 3A exceeds 5000 V
  - MM JESD22-A115-A exceeds 200 V
  - CDM JESD22-C101E exceeds 1 000 V
- Low static power consumption; I<sub>CC</sub> = 0.9 μA (maximum)
- Latch-up performance exceeds 100 mA per JESD78 Class II
- Inputs accept voltages up to 3.6 V
- Low noise overshoot and undershoot < 10 % of V<sub>CC</sub>
- I<sub>OFF</sub> circuitry provides partial power-down mode operation
- Multiple package options
- Specified from -40 °C to +85 °C and -40 °C to +125 °C



# 3. Ordering information

Table 1. Ordering information

| Type number | Package           |        |                                                                                                              |          |
|-------------|-------------------|--------|--------------------------------------------------------------------------------------------------------------|----------|
|             | Temperature range | Name   | Description                                                                                                  | Version  |
| 74AUP2G00DC | –40 °C to +125 °C | VSSOP8 | plastic very thin shrink small outline package; 8 leads; body width 2.3 mm                                   | SOT765-1 |
| 74AUP2G00GT | –40 °C to +125 °C | XSON8  | plastic extremely thin small outline package; no leads; 8 terminals; body 1 $\times$ 1.95 $\times$ 0.5 mm    | SOT833-1 |
| 74AUP2G00GF | –40 °C to +125 °C | XSON8  | extremely thin small outline package; no leads; 8 terminals; body 1.35 $\times$ 1 $\times$ 0.5 mm            | SOT1089  |
| 74AUP2G00GD | –40 °C to +125 °C | XSON8U | plastic extremely thin small outline package; no leads; 8 terminals; UTLP based; body $3\times2\times0.5$ mm | SOT996-2 |
| 74AUP2G00GM | –40 °C to +125 °C | XQFN8  | plastic, extremely thin quad flat package; no leads; 8 terminals; body 1.6 $\times$ 1.6 $\times$ 0.5 mm      | SOT902-2 |
| 74AUP2G00GN | –40 °C to +125 °C | XSON8  | extremely thin small outline package; no leads; 8 terminals; body 1.2 $\times$ 1.0 $\times$ 0.35 mm          | SOT1116  |
| 74AUP2G00GS | –40 °C to +125 °C | XSON8  | extremely thin small outline package; no leads; 8 terminals; body 1.35 $\times$ 1.0 $\times$ 0.35 mm         | SOT1203  |

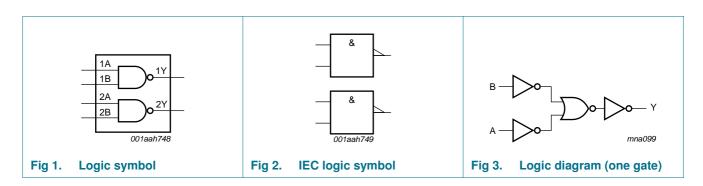

# 4. Marking

Table 2. Marking codes

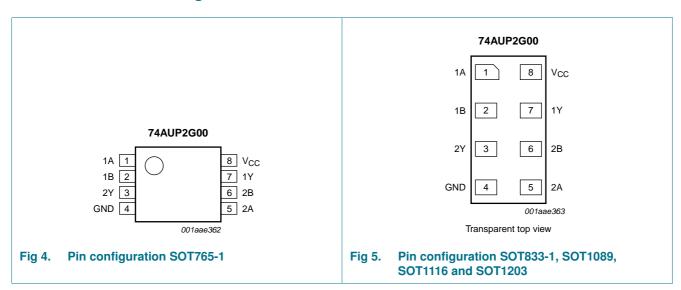
| Type number | Marking code <sup>[1]</sup> |
|-------------|-----------------------------|
| 74AUP2G00DC | p00                         |
| 74AUP2G00GT | p00                         |
| 74AUP2G00GF | pA                          |
| 74AUP2G00GD | p00                         |
| 74AUP2G00GM | p00                         |
| 74AUP2G00GN | pA                          |
| 74AUP2G00GS | pA                          |

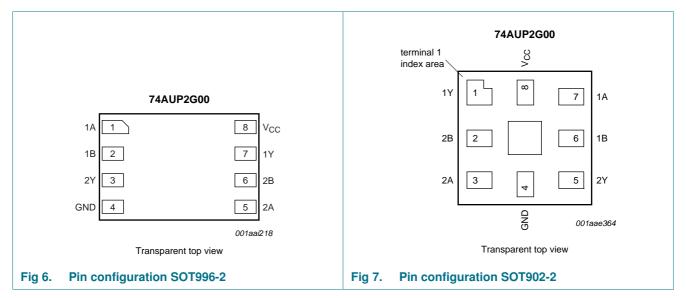
<sup>[1]</sup> The pin 1 indicator is located on the lower left corner of the device, below the marking code.

# 5. Functional diagram



2 of 21


**74AUP2G00 NXP Semiconductors** 


Low-power dual 2-input NAND gate

© NXP B.V. 2012. All rights reserved.

# **Pinning information**

### 6.1 Pinning





### 6.2 Pin description

Table 3. Pin description

74AUP2G00

| Symbol          | Pin                                                           | Pin      |                |  |  |  |
|-----------------|---------------------------------------------------------------|----------|----------------|--|--|--|
|                 | SOT765-1, SOT833-1, SOT1089,<br>SOT996-2, SOT1116 and SOT1203 | SOT902-2 |                |  |  |  |
| 1A, 2A          | 1, 5                                                          | 7, 3     | data input     |  |  |  |
| 1B, 2B          | 2, 6                                                          | 6, 2     | data input     |  |  |  |
| GND             | 4                                                             | 4        | ground (0 V)   |  |  |  |
| 1Y, 2Y          | 7, 3                                                          | 1, 5     | data output    |  |  |  |
| V <sub>CC</sub> | 8                                                             | 8        | supply voltage |  |  |  |

Low-power dual 2-input NAND gate

# 7. Functional description

Table 4. Function table[1]

| Input | Output |    |
|-------|--------|----|
| nA    | nB     | nY |
| L     | L      | Н  |
| L     | Н      | Н  |
| Н     | L      | Н  |
| Н     | Н      | L  |

<sup>[1]</sup> H = HIGH voltage level; L = LOW voltage level.

# 8. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

| Symbol           | Parameter               | Conditions                                                           | Min             | Max  | Unit |
|------------------|-------------------------|----------------------------------------------------------------------|-----------------|------|------|
| $V_{CC}$         | supply voltage          |                                                                      | -0.5            | +4.6 | V    |
| I <sub>IK</sub>  | input clamping current  | $V_I < 0 V$                                                          | <b>–</b> 50     | -    | mA   |
| $V_{I}$          | input voltage           |                                                                      | <u>[1]</u> –0.5 | +4.6 | V    |
| I <sub>OK</sub>  | output clamping current | V <sub>O</sub> < 0 V                                                 | -50             | -    | mA   |
| $V_{O}$          | output voltage          | Active mode and Power-down mode                                      | <u>[1]</u> –0.5 | +4.6 | V    |
| Io               | output current          | $V_O = 0 V \text{ to } V_{CC}$                                       | -               | ±20  | mA   |
| I <sub>CC</sub>  | supply current          |                                                                      | -               | 50   | mA   |
| $I_{GND}$        | ground current          |                                                                      | -50             | -    | mA   |
| $T_{stg}$        | storage temperature     |                                                                      | -65             | +150 | °C   |
| P <sub>tot</sub> | total power dissipation | $T_{amb} = -40  ^{\circ}\text{C} \text{ to } +125  ^{\circ}\text{C}$ | [2] _           | 250  | mW   |

<sup>[1]</sup> The minimum input and output voltage ratings may be exceeded if the input and output current ratings are observed.

# 9. Recommended operating conditions

Table 6. Operating conditions

| Symbol              | Parameter                           | Conditions                                 | Min | Max      | Unit |
|---------------------|-------------------------------------|--------------------------------------------|-----|----------|------|
| $V_{CC}$            | supply voltage                      |                                            | 8.0 | 3.6      | V    |
| VI                  | input voltage                       |                                            | 0   | 3.6      | V    |
| V <sub>O</sub>      | output voltage                      | Active mode                                | 0   | $V_{CC}$ | V    |
|                     |                                     | Power-down mode; $V_{CC} = 0 V$            | 0   | 3.6      | V    |
| T <sub>amb</sub>    | ambient temperature                 |                                            | -40 | +125     | °C   |
| $\Delta t/\Delta V$ | input transition rise and fall rate | $V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$ | -   | 200      | ns/V |

**Product data sheet** 

4 of 21

<sup>[2]</sup> For VSSOP8 packages: above 110 °C the value of P<sub>tot</sub> derates linearly at 8.0 mW/K.
For XSON8, XSON8U and XQFN8 packages: above 118 °C the value of P<sub>tot</sub> derates linearly at 7.8 mW/K.

Low-power dual 2-input NAND gate

# 10. Static characteristics

Table 7. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C                | -<br>-<br>-<br>0.30 × V <sub>CC</sub><br>0.35 × V <sub>CC</sub><br>0.7<br>0.9 | V<br>V<br>V     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------------------------------------------------------|-----------------|
| $\begin{array}{c} V_{CC} = 0.9 \ V \ to \ 1.95 \ V \\ V_{CC} = 2.3 \ V \ to \ 2.7 \ V \\ V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ V_{CC} = 0.8 \ V \\ V_{CC} = 0.9 \ V \ to \ 1.95 \ V \\ V_{CC} = 2.3 \ V \ to \ 2.0 \\ \hline \\ V_{CC} = 2.3 \ V \ to \ 2.0 \\ \hline \\ V_{CC} = 2.3 \ V \ to \ 1.95 \ V \\ V_{CC} = 2.3 \ V \ to \ 3.6 \ V \\ V_{CC} = 2.3 \ V \ to \ 3.6 \ V \\ V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ V_{CC} = 0.1 \ MA; \ V_{CC} = 0.8 \ V \ to \ 3.6 \ V \\ V_{CC} = 0.1 \ V_{CC} = 0.1 \ V_{CC} = 0.1 \\ \hline \\ I_{O} = -1.1 \ mA; \ V_{CC} = 1.1 \ V \\ I_{O} = -1.7 \ mA; \ V_{CC} = 1.65 \ V \\ I_{O} = -2.7 \ mA; \ V_{CC} = 2.3 \ V \\ I_{O} = -2.7 \ mA; \ V_{CC} = 3.0 \ V \\ I_{O} = -4.0 \ mA; \ V_{CC} = 3.0 \ V \\ V_{CC} = 3.0 \ V \\ I_{O} = 20 \ \mu A; \ V_{CC} = 0.8 \ V \ to \ 3.6 \ V \\ I_{O} = 1.1 \ mA; \ V_{CC} = 1.4 \ V \\ I_{O} = 1.7 \ mA; \ V_{CC} = 1.4 \ V \\ I_{O} = 1.7 \ mA; \ V_{CC} = 1.4 \ V \\ I_{O} = 1.9 \ mA; \ V_{CC} = 1.65 \ V \\ I_{O} = 1.9 \ mA; \ V_{CC} = 1.65 \ V \\ I_{O} = 1.9 \ mA; \ V_{CC} = 1.65 \ V \\ I_{O} = 1.9 \ mA; \ V_{CC} = 1.65 \ V \\ I_{O} = 1.9 \ mA; \ V_{CC} = 1.65 \ V \\ I_{O} = 1.9 \ mA; \ V_{CC} = 1.65 \ V \\ I_{O} = 1.9 \ mA; \ V_{CC} = 1.65 \ V \\ I_{O} = 1.9 \ mA; \ V_{CC} = 1.65 \ V \\ I_{O} = 1.9 \ mA; \ V_{CC} = 1.65 \ V \\ I_{O} = 1.9 \ mA; \ V_{CC} = 1.65 \ V \\ I_{O} = 1.9 \ mA; \ V_{CC} = 1.65 \ V \\ I_{O} = 1.9 \ mA; \ V_{CC} = 1.65 \ V \\ I_{O} = 1.9 \ mA; \ V_{CC} = 1.65 \ V \\ I_{O} = 1.9 \ mA; \ V_{CC} = 1.65 \ V \\ I_{O} = 1.9 \ mA; \ V_{CC} = 1.65 \ V \\ I_{O} = 1.9 \ mA; \ V_{CC} = 1.65 \ V \\ I_{O} = 1.9 \ mA; \ V_{CC} = 1.65 \ V \\ I_{O} = 1.9 \ mA; \ V_{CC} = 1.65 \ V \\ I_{O} = 1.9 \ mA; \ V_{CC} = 1.65 \ V \\ I_{O} = 1.9 \ mA; \ V_{CC} = 1.65 \ V \\ I_{O} = 1.9 \ mA; \ V_{CC} = 1.65 \ V \\ I_{O} = 1.9 \ mA; \ V_{CC} = 1.65 \ V \\ I_{O} = 1.9 \ mA; \ V_{CC} = 1.65 \ V \\ I_{O} = 1.9 \ mA; \ V_{CC} = 1.65 \ V \\ I_{O} = 1.9 \ mA; \ V_{CC} = 1.65 \ V \\ I_{O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C                | -<br>0.30 × V <sub>CC</sub><br>0.35 × V <sub>CC</sub><br>0.7<br>0.9           | V V V V V V V V |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -<br>-<br>-<br>- | -<br>0.30 × V <sub>CC</sub><br>0.35 × V <sub>CC</sub><br>0.7<br>0.9           | V V V V V V     |
| $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V} \qquad 2.0$ $V_{IL} \qquad \text{LOW-level input voltage} \qquad V_{CC} = 0.8 \text{ V} \qquad -$ $V_{CC} = 0.9 \text{ V to } 1.95 \text{ V} \qquad -$ $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V} \qquad -$ $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V} \qquad -$ $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V} \qquad -$ $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V} \qquad -$ $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V} \qquad -$ $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V} \qquad -$ $V_{CC} = 0.8 \text{ V to } 3.6 \text{ V} \qquad -$ $I_{O} = -20 \text{ µA; } V_{CC} = 0.8 \text{ V to } 3.6 \text{ V} \qquad V_{CC} = 0.1 \text{ V}$ $I_{O} = -1.1 \text{ mA; } V_{CC} = 1.1 \text{ V} \qquad 0.75 \times V_{CC} = 0.1 \text{ V}$ $I_{O} = -1.1 \text{ mA; } V_{CC} = 1.4 \text{ V} \qquad 1.11 \qquad -$ $I_{O} = -1.9 \text{ mA; } V_{CC} = 1.65 \text{ V} \qquad 1.32 \qquad -$ $I_{O} = -2.3 \text{ mA; } V_{CC} = 2.3 \text{ V} \qquad 1.9 \qquad -$ $I_{O} = -2.7 \text{ mA; } V_{CC} = 2.3 \text{ V} \qquad 2.05 \qquad -$ $I_{O} = -2.7 \text{ mA; } V_{CC} = 3.0 \text{ V} \qquad 2.72 \qquad -$ $I_{O} = -4.0 \text{ mA; } V_{CC} = 3.0 \text{ V} \qquad 2.6 \qquad -$ $V_{OL} \qquad \text{LOW-level output voltage} \qquad V_{I} = V_{IH} \text{ or } V_{IL} \qquad -$ $I_{O} = 20 \text{ µA; } V_{CC} = 1.4 \text{ V} \qquad -$ $I_{O} = 1.1 \text{ mA; } V_{CC} = 1.4 \text{ V} \qquad -$ $I_{O} = 1.7 \text{ mA; } V_{CC} = 1.4 \text{ V} \qquad -$ $I_{O} = 1.7 \text{ mA; } V_{CC} = 1.65 \text{ V} \qquad -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | -<br>0.30 × V <sub>CC</sub><br>0.35 × V <sub>CC</sub><br>0.7<br>0.9           | V V V V V V     |
| $\begin{array}{c} V_{IL} & LOW\mbox{-level input voltage} & V_{CC} = 0.8 \ V & - \\ \hline V_{CC} = 0.9 \ V \ to \ 1.95 \ V & - \\ \hline V_{CC} = 2.3 \ V \ to \ 2.7 \ V & - \\ \hline V_{CC} = 3.0 \ V \ to \ 3.6 \ V & - \\ \hline V_{OC} = 3.0 \ V \ to \ 3.6 \ V & - \\ \hline V_{OC} = 3.0 \ V \ to \ 3.6 \ V & V_{CC} = 0.1 \ V_{CC} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | 0.35 × V <sub>CC</sub> 0.7 0.9                                                | V V V V V       |
| $V_{CC} = 0.9 \text{ V to } 1.95 \text{ V} \\ V_{CC} = 2.3 \text{ V to } 2.7 \text{ V} \\ V_{CC} = 3.0 \text{ V to } 3.6 \text{ V} \\ V_{CC} = 3.0 \text{ V to } 3.6 \text{ V} \\ V_{CC} = 3.0 \text{ V to } 3.6 \text{ V} \\ V_{CC} = 0.8 \text{ V to } 3.6 \text{ V} \\ V_{CC} = 0.8 \text{ V to } 3.6 \text{ V} \\ V_{CC} = 0.1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | 0.35 × V <sub>CC</sub> 0.7 0.9                                                | V<br>V<br>V     |
| $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V} \\ V_{CC} = 3.0 \text{ V to } 3.6 \text{ V} \\ V_{OH} \\ \hline $       |                  | 0.7<br>0.9                                                                    | V<br>V          |
| $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V} \\ V_{OH} \\ \hline \\ V_{OH} $ |                  | 0.9                                                                           | V               |
| $\begin{array}{c} V_{OH} & \text{HIGH-level output voltage} \\ V_{I} = V_{IH} \text{ or } V_{IL} \\ \hline I_{O} = -20 \ \mu\text{A}; \ V_{CC} = 0.8 \ V \text{ to } 3.6 \ V \\ \hline I_{O} = -1.1 \ \text{mA}; \ V_{CC} = 1.1 \ V \\ \hline I_{O} = -1.7 \ \text{mA}; \ V_{CC} = 1.4 \ V \\ \hline I_{O} = -1.9 \ \text{mA}; \ V_{CC} = 1.65 \ V \\ \hline I_{O} = -2.3 \ \text{mA}; \ V_{CC} = 1.65 \ V \\ \hline I_{O} = -2.3 \ \text{mA}; \ V_{CC} = 2.3 \ V \\ \hline I_{O} = -3.1 \ \text{mA}; \ V_{CC} = 2.3 \ V \\ \hline I_{O} = -2.7 \ \text{mA}; \ V_{CC} = 3.0 \ V \\ \hline I_{O} = -2.7 \ \text{mA}; \ V_{CC} = 3.0 \ V \\ \hline I_{O} = -4.0 \ \text{mA}; \ V_{CC} = 3.0 \ V \\ \hline V_{I} = V_{IH} \ \text{or } V_{IL} \\ \hline I_{O} = 20 \ \mu\text{A}; \ V_{CC} = 0.8 \ V \ \text{to } 3.6 \ V \\ \hline I_{O} = 1.1 \ \text{mA}; \ V_{CC} = 1.1 \ V \\ \hline I_{O} = 1.7 \ \text{mA}; \ V_{CC} = 1.4 \ V \\ \hline I_{O} = 1.9 \ \text{mA}; \ V_{CC} = 1.65 \ V \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | -                                                                             | V               |
| $\begin{array}{c} I_O = -20~\mu\text{A};~V_{CC} = 0.8~V~to~3.6~V~~V_{CC} - 0.1\\ I_O = -1.1~m\text{A};~V_{CC} = 1.1~V~~0.75 \times V_{CC}\\ I_O = -1.7~m\text{A};~V_{CC} = 1.4~V~~1.11\\ I_O = -1.9~m\text{A};~V_{CC} = 1.65~V~~1.32\\ I_O = -2.3~m\text{A};~V_{CC} = 2.3~V~~2.05\\ I_O = -3.1~m\text{A};~V_{CC} = 2.3~V~~1.9\\ I_O = -2.7~m\text{A};~V_{CC} = 3.0~V~~2.72\\ I_O = -4.0~m\text{A};~V_{CC} = 3.0~V~~2.6\\ \hline \\ V_{OL} & LOW\text{-level output voltage} & V_I = V_{IH}~or~V_{IL}\\ I_O = 20~\mu\text{A};~V_{CC} = 0.8~V~to~3.6~V~~-\\ I_O = 1.1~m\text{A};~V_{CC} = 1.4~V~~-\\ I_O = 1.7~m\text{A};~V_{CC} = 1.4~V~~-\\ I_O = 1.9~m\text{A};~V_{CC} = 1.65~V~~-\\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | -                                                                             |                 |
| $\begin{array}{c} I_O = -1.1 \text{ mA; } V_{CC} = 1.1 \text{ V} & 0.75 \times V_O \\ I_O = -1.7 \text{ mA; } V_{CC} = 1.4 \text{ V} & 1.11 \\ I_O = -1.9 \text{ mA; } V_{CC} = 1.65 \text{ V} & 1.32 \\ I_O = -2.3 \text{ mA; } V_{CC} = 2.3 \text{ V} & 2.05 \\ I_O = -3.1 \text{ mA; } V_{CC} = 2.3 \text{ V} & 1.9 \\ I_O = -2.7 \text{ mA; } V_{CC} = 3.0 \text{ V} & 2.72 \\ I_O = -4.0 \text{ mA; } V_{CC} = 3.0 \text{ V} & 2.6 \\ \end{array}$ $\begin{array}{c} V_{OL} & \text{LOW-level output voltage} & V_I = V_{IH} \text{ or } V_{IL} \\ I_O = 20  \mu\text{A; } V_{CC} = 0.8 \text{ V to } 3.6 \text{ V} & -100 \\ I_O = 1.1 \text{ mA; } V_{CC} = 1.1 \text{ V} & -100 \\ I_O = 1.7 \text{ mA; } V_{CC} = 1.4 \text{ V} & -100 \\ I_O = 1.9 \text{ mA; } V_{CC} = 1.65 \text{ V} & -100 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | -                                                                             |                 |
| $\begin{array}{c} I_O = -1.7 \text{ mA; } V_{CC} = 1.4 \text{ V} & 1.11 \\ I_O = -1.9 \text{ mA; } V_{CC} = 1.65 \text{ V} & 1.32 \\ I_O = -2.3 \text{ mA; } V_{CC} = 2.3 \text{ V} & 2.05 \\ I_O = -3.1 \text{ mA; } V_{CC} = 2.3 \text{ V} & 1.9 \\ I_O = -2.7 \text{ mA; } V_{CC} = 3.0 \text{ V} & 2.72 \\ I_O = -4.0 \text{ mA; } V_{CC} = 3.0 \text{ V} & 2.6 \\ \end{array}$ $\begin{array}{c} V_{OL} & \text{LOW-level output voltage} & V_I = V_{IH} \text{ or } V_{IL} \\ I_O = 20  \mu\text{A; } V_{CC} = 0.8 \text{ V to } 3.6 \text{ V} & -1.00 \\ I_O = 1.1 \text{ mA; } V_{CC} = 1.1 \text{ V} & -1.00 \\ I_O = 1.7 \text{ mA; } V_{CC} = 1.4 \text{ V} & -1.00 \\ I_O = 1.9 \text{ mA; } V_{CC} = 1.65 \text{ V} & -1.00 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C -<br>-         | -                                                                             |                 |
| $I_{O} = -1.9 \text{ mA}; V_{CC} = 1.65 \text{ V} \qquad \qquad 1.32$ $I_{O} = -2.3 \text{ mA}; V_{CC} = 2.3 \text{ V} \qquad \qquad 2.05$ $I_{O} = -3.1 \text{ mA}; V_{CC} = 2.3 \text{ V} \qquad \qquad 1.9$ $I_{O} = -2.7 \text{ mA}; V_{CC} = 3.0 \text{ V} \qquad \qquad 2.72$ $I_{O} = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V} \qquad \qquad 2.6$ $V_{OL} \qquad \qquad V_{I} = V_{IH} \text{ or } V_{IL}$ $I_{O} = 20  \mu\text{A}; V_{CC} = 0.8 \text{ V to } 3.6 \text{ V} \qquad \qquad -$ $I_{O} = 1.1 \text{ mA}; V_{CC} = 1.1 \text{ V} \qquad \qquad -$ $I_{O} = 1.7 \text{ mA}; V_{CC} = 1.4 \text{ V} \qquad \qquad -$ $I_{O} = 1.9 \text{ mA}; V_{CC} = 1.65 \text{ V} \qquad \qquad -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                |                                                                               | V               |
| $\begin{array}{c} I_O = -2.3 \text{ mA; } V_{CC} = 2.3 \text{ V} & 2.05 \\ I_O = -3.1 \text{ mA; } V_{CC} = 2.3 \text{ V} & 1.9 \\ I_O = -2.7 \text{ mA; } V_{CC} = 3.0 \text{ V} & 2.72 \\ I_O = -4.0 \text{ mA; } V_{CC} = 3.0 \text{ V} & 2.6 \\ \end{array}$ $\begin{array}{c} V_{OL} & \text{LOW-level output voltage} & V_I = V_{IH} \text{ or } V_{IL} \\ I_O = 20  \mu\text{A; } V_{CC} = 0.8 \text{ V to } 3.6 \text{ V} & - \\ I_O = 1.1 \text{ mA; } V_{CC} = 1.1 \text{ V} & - \\ I_O = 1.7 \text{ mA; } V_{CC} = 1.4 \text{ V} & - \\ I_O = 1.9 \text{ mA; } V_{CC} = 1.65 \text{ V} & - \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                | -                                                                             | V               |
| $I_{O} = -3.1 \text{ mA}; V_{CC} = 2.3 \text{ V} \qquad \qquad 1.9$ $I_{O} = -2.7 \text{ mA}; V_{CC} = 3.0 \text{ V} \qquad \qquad 2.72$ $I_{O} = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V} \qquad \qquad 2.6$ $V_{OL} \qquad \qquad V_{I} = V_{IH} \text{ or } V_{IL}$ $I_{O} = 20  \mu\text{A}; V_{CC} = 0.8 \text{ V to } 3.6 \text{ V} \qquad \qquad -$ $I_{O} = 1.1 \text{ mA}; V_{CC} = 1.1 \text{ V} \qquad \qquad -$ $I_{O} = 1.7 \text{ mA}; V_{CC} = 1.4 \text{ V} \qquad \qquad -$ $I_{O} = 1.9 \text{ mA}; V_{CC} = 1.65 \text{ V} \qquad \qquad -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  | -                                                                             | V               |
| $I_O = -2.7 \text{ mA}; V_{CC} = 3.0 \text{ V} \qquad 2.72$ $I_O = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V} \qquad 2.6$ $V_{OL} \qquad \text{LOW-level output voltage} \qquad V_I = V_{IH} \text{ or } V_{IL}$ $I_O = 20  \mu\text{A}; V_{CC} = 0.8 \text{ V to } 3.6 \text{ V} \qquad -$ $I_O = 1.1 \text{ mA}; V_{CC} = 1.1 \text{ V} \qquad -$ $I_O = 1.7 \text{ mA}; V_{CC} = 1.4 \text{ V} \qquad -$ $I_O = 1.9 \text{ mA}; V_{CC} = 1.65 \text{ V} \qquad -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                | -                                                                             | V               |
| $I_{O} = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V} \qquad 2.6$ $V_{OL} \qquad \text{LOW-level output voltage} \qquad V_{I} = V_{IH} \text{ or } V_{IL}$ $I_{O} = 20  \mu\text{A}; V_{CC} = 0.8 \text{ V to } 3.6 \text{ V} \qquad -$ $I_{O} = 1.1 \text{ mA}; V_{CC} = 1.1 \text{ V} \qquad -$ $I_{O} = 1.7 \text{ mA}; V_{CC} = 1.4 \text{ V} \qquad -$ $I_{O} = 1.9 \text{ mA}; V_{CC} = 1.65 \text{ V} \qquad -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                | -                                                                             | V               |
| V <sub>OL</sub> LOW-level output voltage $\begin{aligned} V_I &= V_{IH} \text{ or } V_{IL} \\ I_O &= 20 \ \mu\text{A}; \ V_{CC} = 0.8 \ \text{V to } 3.6 \ \text{V} \end{aligned} \\ I_O &= 1.1 \ \text{mA}; \ V_{CC} = 1.1 \ \text{V} \\ I_O &= 1.7 \ \text{mA}; \ V_{CC} = 1.4 \ \text{V} \end{aligned} \\ I_O &= 1.9 \ \text{mA}; \ V_{CC} = 1.65 \ \text{V} \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                | -                                                                             | V               |
| $I_{O} = 20 \; \mu \text{A}; \; V_{CC} = 0.8 \; \text{V to } 3.6 \; \text{V}$ $I_{O} = 1.1 \; \text{mA}; \; V_{CC} = 1.1 \; \text{V}$ $I_{O} = 1.7 \; \text{mA}; \; V_{CC} = 1.4 \; \text{V}$ $I_{O} = 1.9 \; \text{mA}; \; V_{CC} = 1.65 \; \text{V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                | -                                                                             | V               |
| $I_{O}$ = 1.1 mA; $V_{CC}$ = 1.1 V -<br>$I_{O}$ = 1.7 mA; $V_{CC}$ = 1.4 V -<br>$I_{O}$ = 1.9 mA; $V_{CC}$ = 1.65 V -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                                                                               |                 |
| $I_O = 1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$ - $I_O = 1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                | 0.1                                                                           | V               |
| $I_O = 1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                | $0.3\times V_{\text{CC}}$                                                     | V               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                | 0.31                                                                          | V               |
| $I_{\rm O} = 2.3  \text{mA};  V_{\rm CC} = 2.3  \text{V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                | 0.31                                                                          | V               |
| , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                | 0.31                                                                          | V               |
| $I_O = 3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                | 0.44                                                                          | V               |
| $I_O = 2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                | 0.31                                                                          | V               |
| $I_{O} = 4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                | 0.44                                                                          | V               |
| input leakage current $V_1 = GND$ to 3.6 V; $V_{CC} = 0$ V to 3.6 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                | ±0.1                                                                          | μΑ              |
| OFF power-off leakage current $V_1$ or $V_0 = 0$ V to 3.6 V; $V_{CC} = 0$ V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                | ±0.2                                                                          | μΑ              |
| $\Delta I_{OFF}$ additional power-off $V_{I}$ or $V_{O} = 0$ V to 3.6 V; - leakage current $V_{CC} = 0$ V to 0.2 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                | ±0.2                                                                          | μΑ              |
| supply current $V_I = GND \text{ or } V_{CC}; I_O = 0 \text{ A}; V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                | 0.5                                                                           | μΑ              |
| additional supply current $V_I = V_{CC} - 0.6 \text{ V}; I_O = 0 \text{ A};$ $V_{CC} = 3.3 \text{ V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                | 40                                                                            | μΑ              |
| $V_{CC} = 0 \text{ V to } 3.6 \text{ V; } V_{I} = \text{GND or } V_{CC}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.0              | -                                                                             | рF              |
| $V_{O} = V_{O} = 0$ output capacitance $V_{O} = 0$ output capacitance $V_{O} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.7              | -                                                                             | pF              |

# Low-power dual 2-input NAND gate

 Table 7.
 Static characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

| Symbol               | Parameter                               | Conditions                                                                         | Min                  | Тур | Max                         | Unit |
|----------------------|-----------------------------------------|------------------------------------------------------------------------------------|----------------------|-----|-----------------------------|------|
| T <sub>amb</sub> = - | 40 °C to +85 °C                         |                                                                                    |                      |     |                             |      |
| V <sub>IH</sub>      | HIGH-level input voltage                | $V_{CC} = 0.8 \text{ V}$                                                           | $0.70 \times V_{CC}$ | -   | -                           | V    |
|                      |                                         | V <sub>CC</sub> = 0.9 V to 1.95 V                                                  | $0.65 \times V_{CC}$ | -   | -                           | V    |
|                      |                                         | V <sub>CC</sub> = 2.3 V to 2.7 V                                                   | 1.6                  | -   | -                           | V    |
|                      |                                         | V <sub>CC</sub> = 3.0 V to 3.6 V                                                   | 2.0                  | -   | -                           | V    |
| V <sub>IL</sub>      | LOW-level input voltage                 | V <sub>CC</sub> = 0.8 V                                                            | -                    | -   | $0.30 \times V_{\text{CC}}$ | V    |
|                      |                                         | V <sub>CC</sub> = 0.9 V to 1.95 V                                                  | -                    | -   | $0.35 \times V_{CC}$        | V    |
|                      |                                         | V <sub>CC</sub> = 2.3 V to 2.7 V                                                   | -                    | -   | 0.7                         | V    |
|                      |                                         | $V_{CC}$ = 3.0 V to 3.6 V                                                          | -                    | -   | 0.9                         | V    |
| V <sub>OH</sub>      | HIGH-level output voltage               | $V_I = V_{IH}$ or $V_{IL}$                                                         |                      |     |                             |      |
|                      |                                         | $I_O = -20 \mu A$ ; $V_{CC} = 0.8 \text{ V}$ to 3.6 V                              | $V_{CC}-0.1$         | -   | -                           | V    |
|                      |                                         | $I_{O} = -1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$                                  | $0.7 \times V_{CC}$  | -   | -                           | V    |
|                      |                                         | $I_{O} = -1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$                                  | 1.03                 | -   | -                           | V    |
|                      |                                         | $I_{O} = -1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$                                 | 1.30                 | -   | -                           | V    |
|                      |                                         | $I_{O} = -2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$                                  | 1.97                 | -   | -                           | V    |
|                      |                                         | $I_{O} = -3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$                                  | 1.85                 | -   | -                           | ٧    |
|                      |                                         | $I_{O} = -2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$                                  | 2.67                 | -   | -                           | ٧    |
|                      |                                         | $I_{O} = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$                                  | 2.55                 | -   | -                           | V    |
| V <sub>OL</sub>      | LOW-level output voltage                | $V_{I} = V_{IH}$ or $V_{IL}$                                                       |                      |     |                             |      |
|                      |                                         | $I_{O}$ = 20 $\mu$ A; $V_{CC}$ = 0.8 V to 3.6 V                                    | -                    | -   | 0.1                         | V    |
|                      |                                         | $I_O = 1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$                                     | -                    | -   | $0.3 \times V_{CC}$         | V    |
|                      |                                         | $I_O = 1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$                                     | -                    | -   | 0.37                        | V    |
|                      |                                         | $I_O = 1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$                                    | -                    | -   | 0.35                        | V    |
|                      |                                         | $I_O = 2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$                                     | -                    | -   | 0.33                        | V    |
|                      |                                         | $I_O = 3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$                                     | -                    | -   | 0.45                        | ٧    |
|                      |                                         | $I_O = 2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$                                     | -                    | -   | 0.33                        | V    |
|                      |                                         | $I_O = 4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$                                     | -                    | -   | 0.45                        | ٧    |
| I                    | input leakage current                   | $V_I = GND$ to 3.6 V; $V_{CC} = 0$ V to 3.6 V                                      | -                    | -   | ±0.5                        | μΑ   |
| OFF                  | power-off leakage current               | $V_I$ or $V_O = 0$ V to 3.6 V; $V_{CC} = 0$ V                                      | -                    | -   | ±0.5                        | μΑ   |
| Δl <sub>OFF</sub>    | additional power-off<br>leakage current | $V_1$ or $V_0 = 0$ V to 3.6 V;<br>$V_{CC} = 0$ V to 0.2 V                          | -                    | -   | ±0.6                        | μΑ   |
| CC                   | supply current                          | $V_I$ = GND or $V_{CC}$ ; $I_O$ = 0 A; $V_{CC}$ = 0.8 V to 3.6 V                   | -                    | -   | 0.9                         | μΑ   |
| Δl <sub>CC</sub>     | additional supply current               | $V_{I} = V_{CC} - 0.6 \text{ V}; I_{O} = 0 \text{ A};$<br>$V_{CC} = 3.3 \text{ V}$ | [1] -                | -   | 50                          | μΑ   |

### Low-power dual 2-input NAND gate

**Table 7. Static characteristics** ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

| Symbol               | Parameter                               | Conditions                                                                                         | Min                         | Тур | Max                  | Uni |
|----------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------|-----|----------------------|-----|
| T <sub>amb</sub> = - | 40 °C to +125 °C                        |                                                                                                    |                             |     |                      |     |
| V <sub>IH</sub>      | HIGH-level input voltage                | V <sub>CC</sub> = 0.8 V                                                                            | $0.75 \times V_{CC}$        | -   | -                    | ٧   |
|                      |                                         | V <sub>CC</sub> = 0.9 V to 1.95 V                                                                  | $0.70 \times V_{\text{CC}}$ | -   | -                    | ٧   |
|                      |                                         | V <sub>CC</sub> = 2.3 V to 2.7 V                                                                   | 1.6                         | -   | -                    | ٧   |
|                      |                                         | V <sub>CC</sub> = 3.0 V to 3.6 V                                                                   | 2.0                         | -   | -                    | ٧   |
| / <sub>IL</sub>      | LOW-level input voltage                 | V <sub>CC</sub> = 0.8 V                                                                            | -                           | -   | $0.25 \times V_{CC}$ | ٧   |
|                      |                                         | V <sub>CC</sub> = 0.9 V to 1.95 V                                                                  | -                           | -   | $0.30 \times V_{CC}$ | ٧   |
|                      |                                         | $V_{CC}$ = 2.3 V to 2.7 V                                                                          | -                           | -   | 0.7                  | ٧   |
|                      |                                         | $V_{CC}$ = 3.0 V to 3.6 V                                                                          | -                           | -   | 0.9                  | ٧   |
| / <sub>OH</sub>      | HIGH-level output voltage               | $V_I = V_{IH}$ or $V_{IL}$                                                                         |                             |     |                      |     |
|                      |                                         | $I_{O} = -20 \mu A$ ; $V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$                                   | V <sub>CC</sub> – 0.11      | -   | -                    | ٧   |
|                      |                                         | $I_{O} = -1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$                                                  | $0.6 \times V_{CC}$         | -   | -                    | ٧   |
|                      |                                         | $I_{O} = -1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$                                                  | 0.93                        | -   | -                    | ٧   |
|                      |                                         | $I_{O} = -1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$                                                 | 1.17                        | -   | -                    | ٧   |
|                      |                                         | $I_{O} = -2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$                                                  | 1.77                        | -   | -                    | ٧   |
|                      |                                         | $I_{O} = -3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$                                                  | 1.67                        | -   | -                    | ٧   |
|                      |                                         | $I_{O} = -2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$                                                  | 2.40                        | -   | -                    | ٧   |
|                      |                                         | $I_O = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$                                                    | 2.30                        | -   | -                    | ٧   |
| / <sub>OL</sub>      | LOW-level output voltage                | $V_I = V_{IH}$ or $V_{IL}$                                                                         |                             |     |                      |     |
|                      |                                         | $I_O = 20 \mu A$ ; $V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$                                      | -                           | -   | 0.11                 | ٧   |
|                      |                                         | I <sub>O</sub> = 1.1 mA; V <sub>CC</sub> = 1.1 V                                                   | -                           | -   | $0.33 \times V_{CC}$ | ٧   |
|                      |                                         | I <sub>O</sub> = 1.7 mA; V <sub>CC</sub> = 1.4 V                                                   | -                           | -   | 0.41                 | ٧   |
|                      |                                         | I <sub>O</sub> = 1.9 mA; V <sub>CC</sub> = 1.65 V                                                  | -                           | -   | 0.39                 | ٧   |
|                      |                                         | $I_O = 2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$                                                     | -                           | -   | 0.36                 | ٧   |
|                      |                                         | $I_O = 3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$                                                     | -                           | -   | 0.50                 | V   |
|                      |                                         | $I_O = 2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$                                                     | -                           | -   | 0.36                 | ٧   |
|                      |                                         | $I_O = 4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$                                                     | -                           | -   | 0.50                 | V   |
| l                    | input leakage current                   | $V_{I} = GND \text{ to } 3.6 \text{ V}; V_{CC} = 0 \text{ V to } 3.6 \text{ V}$                    | -                           | -   | ±0.75                | μΑ  |
| OFF                  | power-off leakage current               | $V_{I}$ or $V_{O} = 0 \text{ V}$ to 3.6 V; $V_{CC} = 0 \text{ V}$                                  | -                           | -   | ±0.75                | μΑ  |
| N <sub>OFF</sub>     | additional power-off<br>leakage current | $V_1 \text{ or } V_O = 0 \text{ V to } 3.6 \text{ V};$<br>$V_{CC} = 0 \text{ V to } 0.2 \text{ V}$ | -                           | -   | ±0.75                | μA  |
| CC                   | supply current                          | $V_I$ = GND or $V_{CC}$ ; $I_O$ = 0 A; $V_{CC}$ = 0.8 V to 3.6 V                                   | -                           | -   | 1.4                  | μΑ  |
| VI <sub>CC</sub>     | additional supply current               | $V_1 = V_{CC} - 0.6 \text{ V}; I_O = 0 \text{ A};$<br>$V_{CC} = 3.3 \text{ V}$                     | [1] -                       | -   | 75                   | μΑ  |

<sup>[1]</sup> One input at  $V_{CC}$  – 0.6 V, other input at  $V_{CC}$  or GND.

**74AUP2G00** 

Low-power dual 2-input NAND gate

# 11. Dynamic characteristics

Table 8. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 9.

| Symbol Parameter Conditions |                   |                                              | Tai | <sub>mb</sub> = 25 | °C     | T <sub>amb</sub> = | –40 °C to | +125 °C        | Unit            |    |
|-----------------------------|-------------------|----------------------------------------------|-----|--------------------|--------|--------------------|-----------|----------------|-----------------|----|
|                             |                   |                                              |     | Min                | Typ[1] | Max                | Min       | Max<br>(85 °C) | Max<br>(125 °C) |    |
| $C_L = 5 p$                 | F                 |                                              |     |                    |        |                    |           |                |                 | '  |
| t <sub>pd</sub>             | propagation delay | nA, nB to nY; see Figure 8                   | [2] |                    |        |                    |           |                |                 |    |
|                             |                   | $V_{CC} = 0.8 \text{ V}$                     |     | -                  | 17.5   | -                  | -         | -              | -               | ns |
|                             |                   | $V_{CC} = 1.1 \text{ V to } 1.3 \text{ V}$   |     | 2.5                | 5.3    | 11.0               | 2.1       | 12.2           | 13.5            | ns |
|                             |                   | $V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$   |     | 2.0                | 3.8    | 6.8                | 1.8       | 7.8            | 8.6             | ns |
|                             |                   | $V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$ |     | 1.6                | 3.1    | 5.3                | 1.4       | 6.2            | 6.9             | ns |
|                             |                   | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$   |     | 1.3                | 2.5    | 4.0                | 1.1       | 4.7            | 5.2             | ns |
|                             |                   | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$   |     | 1.0                | 2.2    | 3.6                | 1.0       | 4.2            | 4.7             | ns |
| C <sub>L</sub> = 10         | pF                |                                              |     |                    |        |                    |           |                |                 |    |
| $t_{pd}$                    | propagation delay | nA, nB to nY; see Figure 8                   | [2] |                    |        |                    |           |                |                 |    |
|                             |                   | $V_{CC} = 0.8 \text{ V}$                     |     | -                  | 21.0   | -                  | -         | -              | -               | ns |
|                             |                   | $V_{CC} = 1.1 \text{ V to } 1.3 \text{ V}$   |     | 2.4                | 6.1    | 13.0               | 2.2       | 14.4           | 15.9            | ns |
|                             |                   | $V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$   |     | 2.4                | 4.4    | 7.9                | 2.2       | 9.2            | 10.2            | ns |
|                             |                   | $V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$ |     | 2.0                | 3.7    | 6.2                | 1.9       | 7.3            | 8.1             | ns |
|                             |                   | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$   |     | 1.4                | 3.0    | 4.7                | 1.3       | 5.6            | 6.2             | ns |
|                             |                   | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$   |     | 1.3                | 2.8    | 4.3                | 1.2       | 4.9            | 5.4             | ns |
| C <sub>L</sub> = 15         | pF                |                                              |     |                    |        |                    |           |                |                 |    |
| $t_{pd}$                    | propagation delay | nA, nB to nY; see Figure 8                   | [2] |                    |        |                    |           |                |                 |    |
|                             |                   | $V_{CC} = 0.8 \text{ V}$                     |     | -                  | 24.5   | -                  | -         | -              | -               | ns |
|                             |                   | $V_{CC} = 1.1 \text{ V to } 1.3 \text{ V}$   |     | 3.4                | 6.9    | 14.8               | 3.1       | 16.5           | 18.2            | ns |
|                             |                   | $V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$   |     | 2.8                | 5.0    | 8.9                | 2.5       | 10.5           | 11.6            | ns |
|                             |                   | $V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$ |     | 2.0                | 4.1    | 7.0                | 2.0       | 8.3            | 9.2             | ns |
|                             |                   | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$   |     | 1.7                | 3.5    | 5.3                | 1.5       | 6.4            | 7.1             | ns |
|                             |                   | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$   |     | 1.6                | 3.2    | 4.9                | 1.4       | 5.7            | 6.3             | ns |
| C <sub>L</sub> = 30         | pF                |                                              |     |                    |        |                    |           |                |                 |    |
| $t_{pd}$                    | propagation delay |                                              | [2] |                    |        |                    |           |                |                 |    |
|                             |                   | $V_{CC} = 0.8 \text{ V}$                     |     | -                  | 34.8   | -                  | -         | -              | -               | ns |
|                             |                   | $V_{CC} = 1.1 \text{ V to } 1.3 \text{ V}$   |     | 4.6                | 9.2    | 20.1               | 4.1       | 22.6           | 24.9            | ns |
|                             |                   | $V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$   |     | 3.0                | 6.5    | 11.8               | 2.9       | 14.0           | 15.4            | ns |
|                             |                   | $V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$ |     | 2.6                | 5.4    | 9.3                | 2.3       | 11.1           | 12.3            | ns |
|                             |                   | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$   |     | 2.4                | 4.6    | 7.1                | 2.1       | 8.5            | 9.4             | ns |
|                             |                   | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$   |     | 2.3                | 4.3    | 6.5                | 2.1       | 7.6            | 8.4             | ns |

**74AUP2G00 NXP Semiconductors** 

### Low-power dual 2-input NAND gate

**Dynamic characteristics** ...continued Table 8.

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 9.

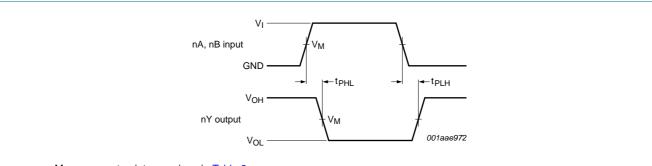
| Symbol       | Parameter                     | Conditions                                              | T <sub>amb</sub> = 25 °C |        | T <sub>amb</sub> = -40 °C to +125 °C |     |                | Unit            |   |    |
|--------------|-------------------------------|---------------------------------------------------------|--------------------------|--------|--------------------------------------|-----|----------------|-----------------|---|----|
|              |                               |                                                         | Min                      | Typ[1] | Max                                  | Min | Max<br>(85 °C) | Max<br>(125 °C) |   |    |
| $C_L = 5 pl$ | F, 10 pF, 15 pF and           | 30 pF                                                   |                          |        |                                      |     |                |                 |   |    |
| $C_{PD}$     | power dissipation capacitance | $f_i = 1 \text{ MHz};$<br>$V_I = \text{GND to } V_{CC}$ | [3]                      |        |                                      |     |                |                 |   |    |
|              |                               | $V_{CC} = 0.8 \text{ V}$                                |                          | -      | 2.8                                  | -   | -              | -               | - | pF |
|              |                               | $V_{CC} = 1.1 \text{ V to } 1.3 \text{ V}$              |                          | -      | 2.9                                  | -   | -              | -               | - | pF |
|              |                               | $V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$              |                          | -      | 3.0                                  | -   | -              | -               | - | pF |
|              |                               | $V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$            |                          | -      | 3.0                                  | -   | -              | -               | - | pF |
|              |                               | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$              |                          | -      | 3.4                                  | -   | -              | -               | - | pF |
|              |                               | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$              |                          | -      | 3.9                                  | -   | -              | -               | - | pF |

- [1] All typical values are measured at nominal V<sub>CC</sub>.
- [2]  $t_{pd}$  is the same as  $t_{PLH}$  and  $t_{PHL}$ .
- [3]  $C_{PD}$  is used to determine the dynamic power dissipation ( $P_D$  in  $\mu W$ ).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$  where:

 $f_i$  = input frequency in MHz;

 $f_0$  = output frequency in MHz;


C<sub>L</sub> = output load capacitance in pF;

V<sub>CC</sub> = supply voltage in V;

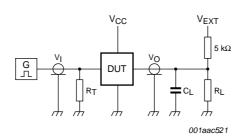
N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}^2 \times f_0)$  = sum of the outputs.

### 12. Waveforms



Measurement points are given in Table 9.


Logic levels:  $V_{OL}$  and  $V_{OH}$  are typical output voltage levels that occur with the output load.

The data input (nA or nB) to output (nY) propagation delays Fig 8.

**Measurement points** Table 9.

| Supply voltage  | Output              | Input               |                 |             |  |  |  |  |
|-----------------|---------------------|---------------------|-----------------|-------------|--|--|--|--|
| V <sub>CC</sub> | V <sub>M</sub>      | V <sub>M</sub>      | VI              | $t_r = t_f$ |  |  |  |  |
| 0.8 V to 3.6 V  | $0.5 \times V_{CC}$ | $0.5 \times V_{CC}$ | V <sub>CC</sub> | ≤ 3.0 ns    |  |  |  |  |

### Low-power dual 2-input NAND gate



Test data is given in Table 10.

Definitions for test circuit:

R<sub>L</sub> = Load resistance.

C<sub>L</sub> = Load capacitance including jig and probe capacitance.

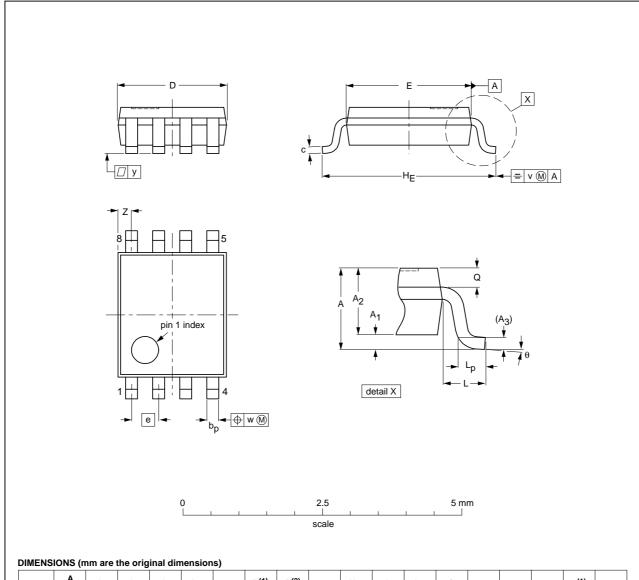
 $R_T$  = Termination resistance should be equal to the output impedance  $Z_o$  of the pulse generator.

 $V_{\text{EXT}}$  = External voltage for measuring switching times.

Fig 9. Test circuit for measuring switching times

#### Table 10. Test data

| Supply voltage  | Load                         |                              | V <sub>EXT</sub>                    |                                     |                                     |
|-----------------|------------------------------|------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| V <sub>CC</sub> | C <sub>L</sub>               | R <sub>L</sub> [1]           | t <sub>PLH</sub> , t <sub>PHL</sub> | t <sub>PZH</sub> , t <sub>PHZ</sub> | t <sub>PZL</sub> , t <sub>PLZ</sub> |
| 0.8 V to 3.6 V  | 5 pF, 10 pF, 15 pF and 30 pF | 5 k $\Omega$ or 1 M $\Omega$ | open                                | GND                                 | $2 \times V_{CC}$                   |


[1] For measuring enable and disable times  $R_L$  = 5 k $\Omega$ .

For measuring propagation delays, setup and hold times and pulse width  $R_L$  = 1  $M\Omega$ .

# 13. Package outline

#### VSSOP8: plastic very thin shrink small outline package; 8 leads; body width 2.3 mm

SOT765-1



| UNIT | A<br>max. | A <sub>1</sub> | A <sub>2</sub> | А3   | bp           | С            | D <sup>(1)</sup> | E <sup>(2)</sup> | е   | HE         | L   | Lp           | Q            | v   | w    | у   | Z <sup>(1)</sup> | θ        |
|------|-----------|----------------|----------------|------|--------------|--------------|------------------|------------------|-----|------------|-----|--------------|--------------|-----|------|-----|------------------|----------|
| mm   | 1         | 0.15<br>0.00   | 0.85<br>0.60   | 0.12 | 0.27<br>0.17 | 0.23<br>0.08 | 2.1<br>1.9       | 2.4<br>2.2       | 0.5 | 3.2<br>3.0 | 0.4 | 0.40<br>0.15 | 0.21<br>0.19 | 0.2 | 0.13 | 0.1 | 0.4<br>0.1       | 8°<br>0° |

#### Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

| OUTLINE  |     | REFER  | EUROPEAN | ISSUE DATE |            |            |
|----------|-----|--------|----------|------------|------------|------------|
| VERSION  | IEC | JEDEC  | JEITA    |            | PROJECTION | ISSUE DATE |
| SOT765-1 |     | MO-187 |          |            |            | 02-06-07   |

Fig 10. Package outline SOT765-1 (VSSOP8)

74AUP2G00 All information provided in this document is subject to legal disclaimers.

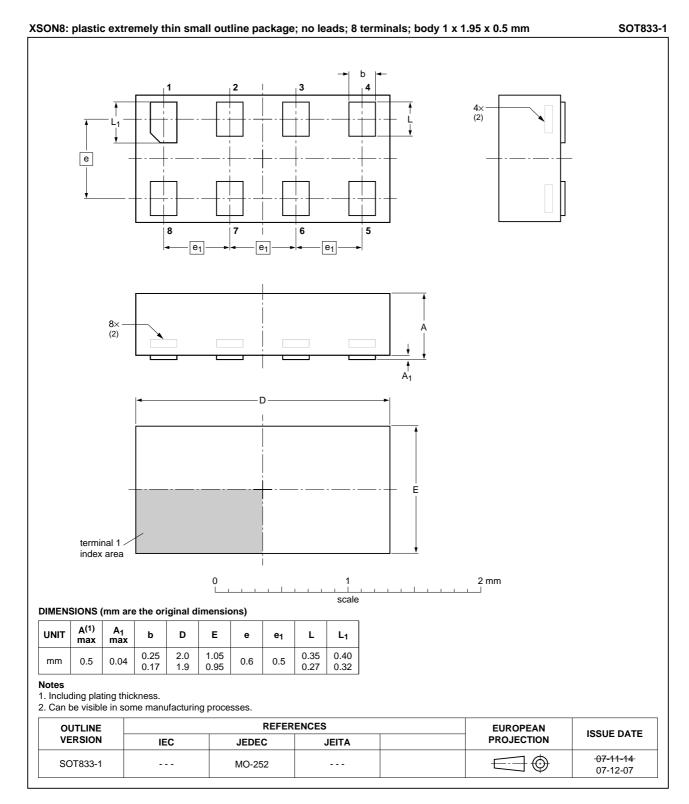



Fig 11. Package outline SOT833-1 (XSON8)

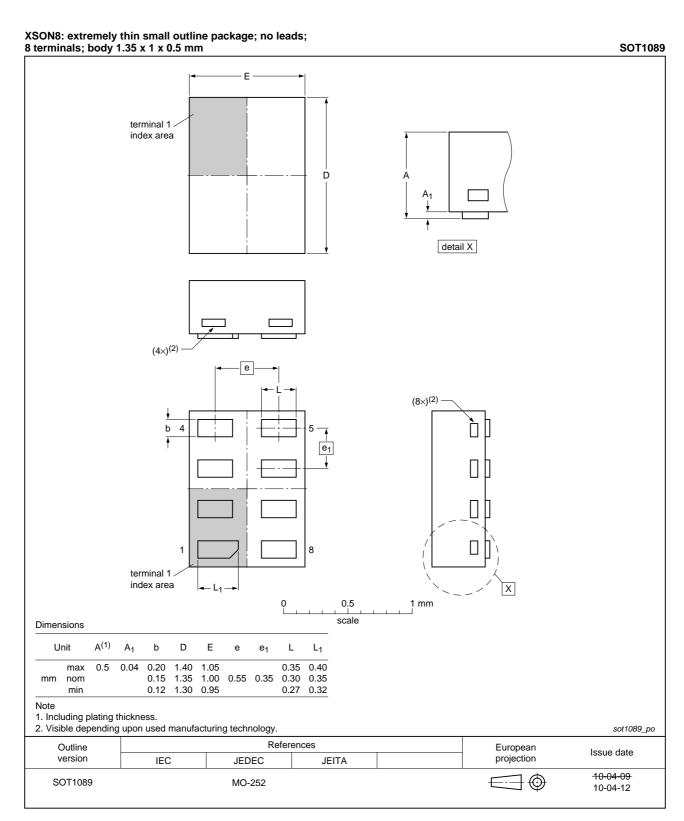



Fig 12. Package outline SOT1089 (XSON8)

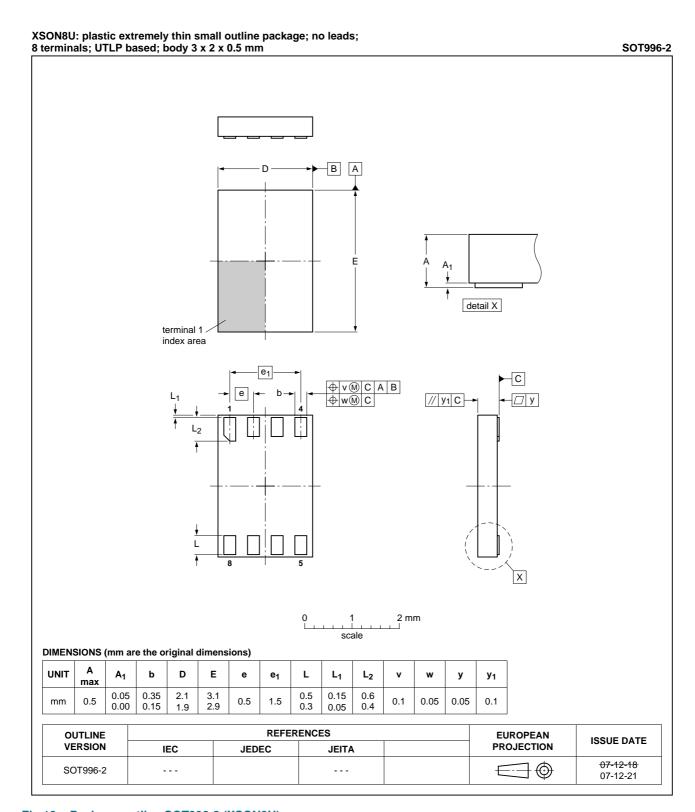



Fig 13. Package outline SOT996-2 (XSON8U)

14 of 21

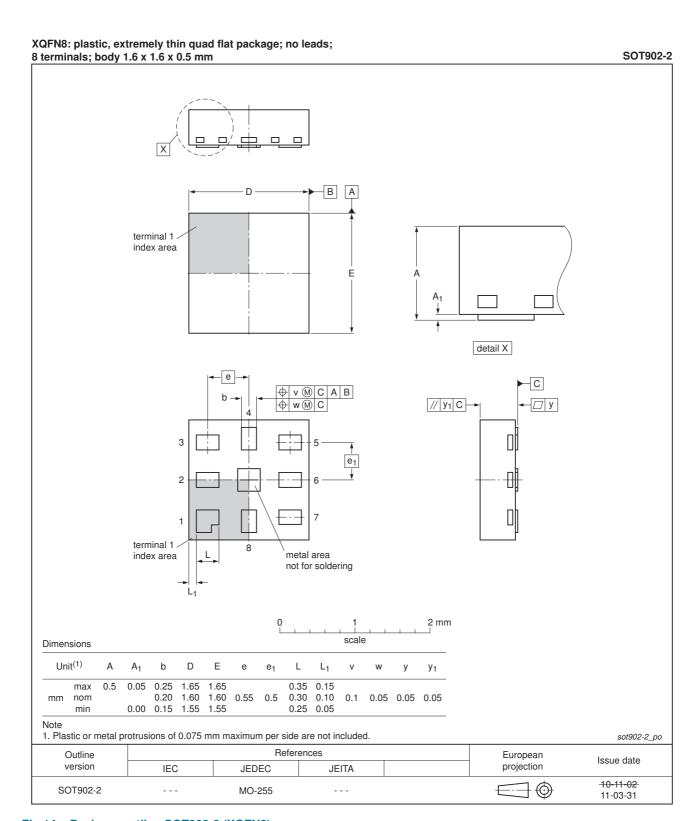



Fig 14. Package outline SOT902-2 (XQFN8)

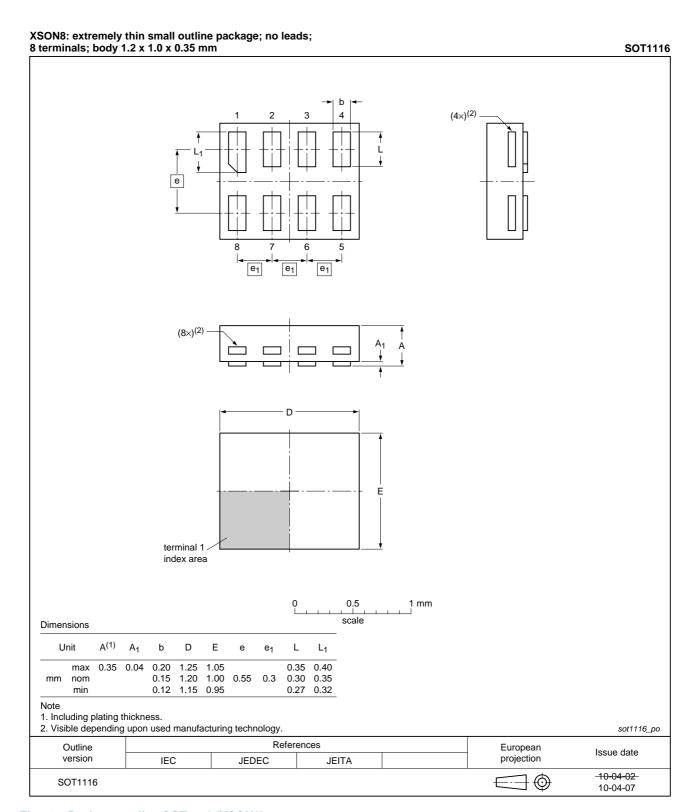



Fig 15. Package outline SOT1116 (XSON8)

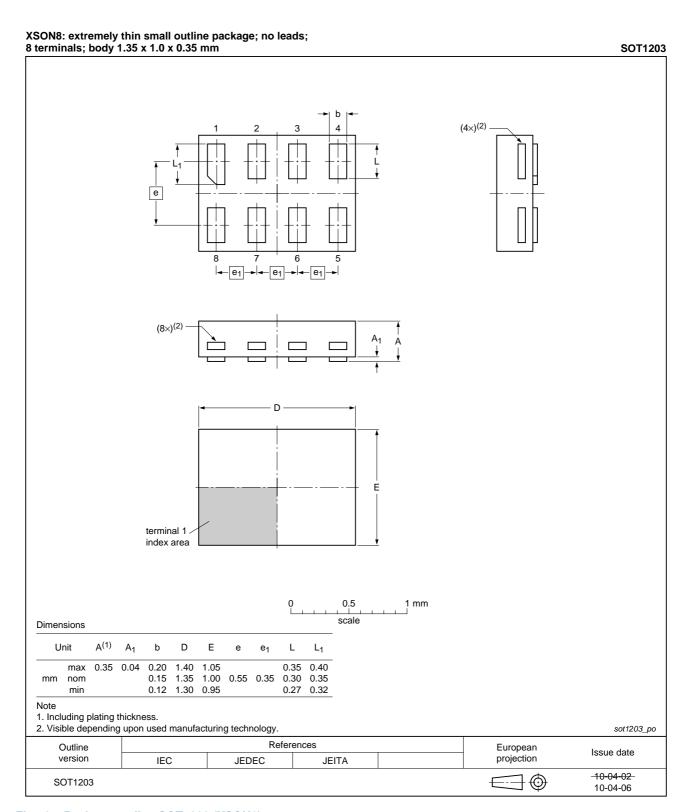



Fig 16. Package outline SOT1203 (XSON8)

**74AUP2G00 NXP Semiconductors** 

Low-power dual 2-input NAND gate

# 14. Abbreviations

#### Table 11. Abbreviations

| Acronym | Description             |
|---------|-------------------------|
| CDM     | Charged Device Model    |
| DUT     | Device Under Test       |
| ESD     | ElectroStatic Discharge |
| НВМ     | Human Body Model        |
| MM      | Machine Model           |

# 15. Revision history

### Table 12. Revision history

| Document ID    | Release date                     | Data sheet status        | Change notice            | Supersedes    |
|----------------|----------------------------------|--------------------------|--------------------------|---------------|
| 74AUP2G00 v.7  | 20120608                         | Product data sheet       | -                        | 74AUP2G00 v.6 |
| Modifications: | <ul> <li>For type num</li> </ul> | nber 74AUP2G00GM the SOT | code has changed to SOTS | 902-2.        |
| 74AUP2G00 v.6  | 20111201                         | Product data sheet       | -                        | 74AUP2G00 v.5 |
| Modifications: | <ul> <li>Legal pages</li> </ul>  | updated.                 |                          |               |
| 74AUP2G00 v.5  | 20101021                         | Product data sheet       | -                        | 74AUP2G00 v.4 |
| 74AUP2G00 v.4  | 20080605                         | Product data sheet       | -                        | 74AUP2G00 v.3 |
| 74AUP2G00 v.3  | 20080403                         | Product data sheet       | -                        | 74AUP2G00 v.2 |
| 74AUP2G00 v.2  | 20070515                         | Product data sheet       | -                        | 74AUP2G00 v.1 |
| 74AUP2G00 v.1  | 20060825                         | Product data sheet       | -                        | -             |
|                |                                  |                          |                          |               |

### 16. Legal information

#### 16.1 Data sheet status

| Document status[1][2]          | Product status[3] | Definition                                                                            |
|--------------------------------|-------------------|---------------------------------------------------------------------------------------|
| Objective [short] data sheet   | Development       | This document contains data from the objective specification for product development. |
| Preliminary [short] data sheet | Qualification     | This document contains data from the preliminary specification.                       |
| Product [short] data sheet     | Production        | This document contains the product specification.                                     |

- [1] Please consult the most recently issued document before initiating or completing a design
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL <a href="http://www.nxp.com">http://www.nxp.com</a>.

#### 16.2 Definitions

**Draft** — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

**Product specification** — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

#### 16.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

**Applications** — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at <a href="http://www.nxp.com/profile/terms">http://www.nxp.com/profile/terms</a>, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

**No offer to sell or license** — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

74AUP2G00

All information provided in this document is subject to legal disclaimers.

#### Low-power dual 2-input NAND gate

**Export control** — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

**Translations** — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

#### 16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

### 17. Contact information

For more information, please visit: <a href="http://www.nxp.com">http://www.nxp.com</a>

For sales office addresses, please send an email to: salesaddresses@nxp.com

**74AUP2G00** 

### Low-power dual 2-input NAND gate

# 18. Contents

| 1    | General description              |
|------|----------------------------------|
| 2    | Features and benefits            |
| 3    | Ordering information             |
| 4    | Marking                          |
| 5    | Functional diagram               |
| 6    | Pinning information              |
| 6.1  | Pinning                          |
| 6.2  | Pin description                  |
| 7    | Functional description           |
| 8    | Limiting values                  |
| 9    | Recommended operating conditions |
| 10   | Static characteristics           |
| 11   | Dynamic characteristics          |
| 12   | Waveforms                        |
| 13   | Package outline                  |
| 14   | Abbreviations                    |
| 15   | Revision history                 |
| 16   | Legal information                |
| 16.1 | Data sheet status                |
| 16.2 | Definitions                      |
| 16.3 | Disclaimers                      |
| 16.4 | Trademarks20                     |
| 17   | Contact information              |
| 18   | Contents                         |

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.