

NR4211TH

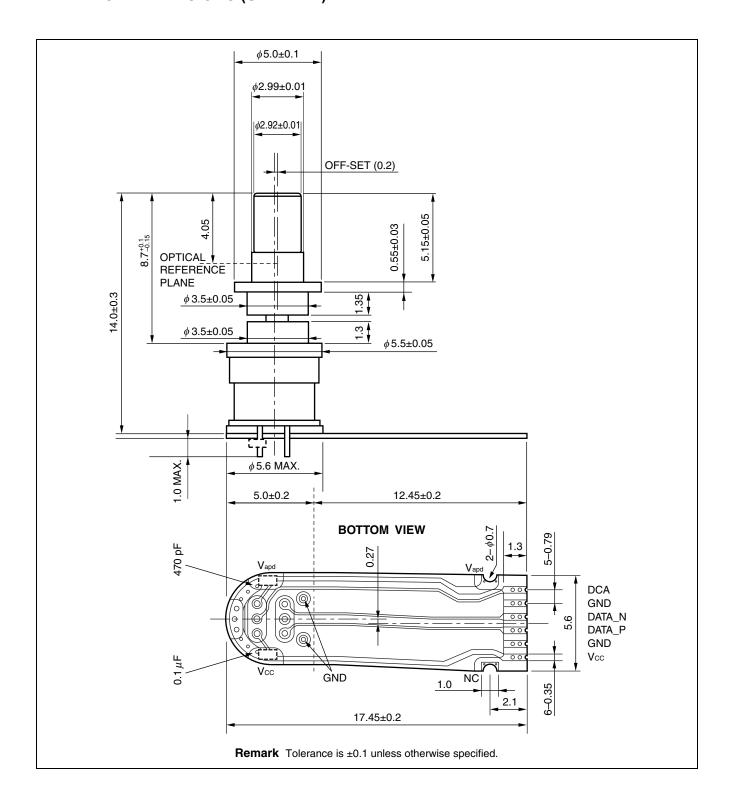
Data Sheet

R08DS0022EJ0100 Rev.1.00 Sep 13, 2012

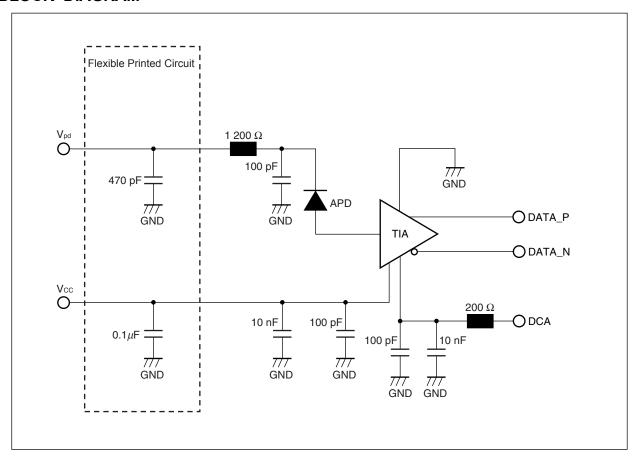
RECEIVER (Limiting TIA, with DCA function)

InAIAS APD RECEIVER WITH INTERNAL PRE-AMPLIFIER FOR 10 Gb/s APPLICATIONS

DESCRIPTION


The NR4211TH product consists of InAIAs-APD (avalanche photo diode) ROSAs (Receiver Optical Sub-Assembly) with internal pre-amplifiers designed for 10 Gb/s long-reach optical transceivers such as the XENPAK/X2/XFP and Transponder. These modules are ideal as receivers for IEEE 10G BASE and SONET OC-192 systems and D-WDM systems.

FEATURES


- XMD-MSA compliant ROSA
- 10 Gb/s high sensitivity InAlAs-APD
- +3.3 V transimpedance pre-amplifier
- Minimum receiver sensitivity
 Operating case temperature
 P_r = -27.5 dBm
 T_C = -5 to +90°C
- Transimpedance $Z_t = 6\,000\,\Omega$ (Single-ended)
- Cut-off frequency $f_C = 7.5 \text{ GHz}$
- With DCA function (Cross point control)
- With flexible printed circuit

PACKAGE DIMENSIONS (UNIT: mm)

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS ($T_A = 25^{\circ}C$, unless otherwise specified)

Parameter	Symbol	Ratings	Unit
APD Reverse Voltage	V_R	V_{BR}	V
APD Reverse Current	I _{R (peak)}	4	mA
Maximum Optical Input Power	P _{in (peak)}	3	dBm
Maximum Optical Input Power		7	
(with 7.5 k Ω serial resistance)			
IC Supply Voltage	V _{CC}	-0.5 to +3.7	V
DCA Voltage	V_{DCA}	0 to +4 and < V _{CC} +0.5	V
Operating Case Temperature	Tc	−5 to +90	°C
Storage Temperature	T _{stg}	-40 to +90	°C
Lead Soldering Temperature	T _{sld}	260 (10 sec.)	°C
(Flexible Printed Circuit)			

ELECTRO-OPTICAL CHARACTERISTICS (T_C = -5 to $+90^{\circ}$ C, V_{CC} = +3.13 to +3.47 V, λ = 1 550 nm, unless otherwise specified)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
APD Sensitivity	S	λ = 1 310 nm, M = 1	0.75	0.9		A/W
		λ = 1 550 nm, M = 1	0.75	0.9		
APD Breakdown Voltage	V_{BR}	I _D = 10 μA			36	V
Temperature Coefficient of APD Breakdown Voltage	δ*1		0	0.02	0.05	V/°C
APD Dark Current	I_D	$V_R = V_{BR} \times 0.9, T_C = 25^{\circ}C$			0.7	μΑ
IC Supply Current	I _{CC}				50	mA
DCA input Voltage	V_{DCA}		2.5		3.5	V
DCA current	I _{DCA}		-30		30	μΑ
Transimpedance	Z _t	Single-ended	3 000	6 000	10 000	Ω
Maximum Output Voltage Swing	V _{clip}	Single-ended			350	mV_{PP}
Cut-off Frequency	f _C	M = 9, P _{in} = –27 dBm	6	7.5		GHz
RF Output Return Loss	S ₂₂	1G-6G, M = 9, Single-ended			-5	dB
Minimum Receiver Sensitivity	P _r	9.95 Gb/s, BER = 10^{-12} , M_{opt} , PRBS = 2^{31} –1, ER = 13 dB, NRZ		-27.5	-26.0	dBm
Overload	Po	9.95 Gb/s, BER = 10^{-12} , M_{opt} , PRBS = 2^{31} –1, ER = 13 dB, NRZ	-6.5			dBm
Optical Return Loss	ORL	λ = 1 310 nm			-27	dB
		λ = 1 550 nm			-27	

Note: *1. $\delta = \frac{\Delta V_{BR}}{\Delta T_{C}}$

SAFETY INFORMATION ON THIS PRODUCT

<u></u>		
Cal	utior	

GaAs Products

This product uses gallium arsenide (GaAs).

GaAs vapor and powder are hazardous to human health if inhaled or ingested, so please observe the following points.

- Follow related laws and ordinances when disposing of the product. If there are no applicable laws and/or ordinances, dispose of the product as recommended below.
 - Commission a disposal company able to (with a license to) collect, transport and dispose of materials that contain arsenic and other such industrial waste materials.
- 2. Exclude the product from general industrial waste and household garbage, and ensure that the product is controlled (as industrial waste subject to special control) up until final disposal.
- Do not burn, destroy, cut, crush, or chemically dissolve the product.
- Do not lick the product or in any way allow it to enter the mouth.

Revision History

NR4211TH Data Sheet

		Description	
Rev.	Date	Page	Summary
1.00	Sep 13, 2012	_	First edition issued