

LASER DIODE

NX8517XC Series

1 470 TO 1 610 nm FOR CWDM 2.5 Gb/s InGaAsP MQW-DFB LASER DIODE TOSA

DESCRIPTION

The NX8517XC is a 1 470 to 1 610 nm Multiple Quantum Well (MQW) structured Distributed Feed-Back (DFB) laser diode TOSA (transmitter optical sub-assembly) with InGaAs monitor PIN-PD in a receptacle type package designed for SFF/SFP transceiver with LC duplex receptacle. This device is ideal for 2.5 Gb/s CWDM application.

FEATURES

· Internal optical isolator

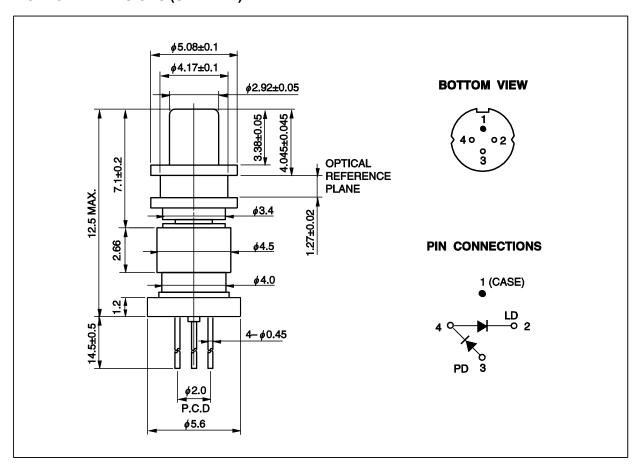
Optical output power

• Peak emission wavelength $\lambda_p = 1470 \text{ to } 1610 \text{ nm}$ (Based on CWDM)

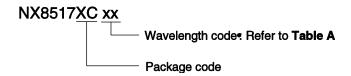
Low threshold current
Ith = 10 mA TYP. @ Tc = 25°C

 $P_f = 2.0 \text{ mW}$

• Operating case temperature range Tc = -20 to +85°C


Side mode suppression ratio
SMSR = 40 dB

InGaAs monitor PIN-PD



The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

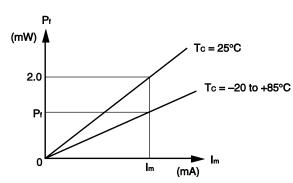
PACKAGE DIMENSIONS (UNIT: mm)

ORDERING INFORMATION

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Ratings	Unit
Optical Output Power from Fiber	Pf	5.0	mW
Forward Current of LD	lF	150	mA
Reverse Voltage of LD	age of LD V _R 2.0		V
Forward Current of PD	lF	2.0	mA
Reverse Voltage of PD	VR	15	V
Operating Case Temperature	Tc	-20 to +85	°C
Storage Temperature	Tstg	-40 to +85	°C
Lead Soldering Temperature	Tsld	350 (3 sec.)	°C

ELECTRO-OPTICAL CHARACTERISTICS (Tc = -20 to +85°C, unless otherwise specified)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Optical Output Power from Fiber	Pf	CW, $Tc = 25^{\circ}C$, $I_F = I_{th} + 20 \text{ mA}$		2.0		mW
Operating Voltage	Vop	CW, P _f = 2.0 mW		1.1	1.6	V
Threshold Current	Ith	CW, Tc = 25°C		10	20	mA
		cw			50	
Differential Efficiency	η d	CW, P _f = 2.0 mW, T _C = 25°C	0.07	0.1		W/A
		CW, P _f = 2.0 mW	0.04			
Peak Emission Wavelength	λρ	CW, $P_f = 2.0$ mW, RMS (-20 dB), $T_C = 35^{\circ}C$	λ _p –2	λ _p *1	λ _p +2	nm
Temperature Dependence of Peak Emission Wavelength	Δλ/ΔΤ	cw	0.08	0.10	0.12	nm/°C
Side Mode Suppression Ratio	SMSR	CW, P _f = 2.0 mW	30	40		dB
Rise Time	t r	Ib = Ith, 20-80%, Pf = 2.0 mW			100	ps
Fall Time	t f	Ib = Ith, 80-20%, Pf = 2.0 mW			150	ps
Monitor Current	Im	CW, V _R = 1.5 V, P _f = 1.0 mW	100	500	1 000	μΑ
Monitor Dark Current	lσ	VR = 1.5 V, Tc = 25°C		0.1	50	nA
		V _R = 1.5 V		10	500	
Tracking Error*2	γ	CW, I _m = const. (@ P _f = 2.0 mW)	-1.0		1.0	dB
Connector Repeatability	-	With master pigtail	-1.0		1.0	dB

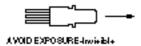
^{*1} Available for CWDM Wavelengths based on ITU-T recommendations λ_p = 1 470, 1 490, 1 510, 1 530, 1 550, 1 570, 1 590, 1 610 nm Please refer to **Table A**.

Table A: CWDM wavelength code (@ Tc = 35°C)

Wavelength Code	MIN. (nm)	TYP. (nm)	MAX. (nm)
47	1 468	1 470	1 472
49	1 488	1 490	1 492
51	1 508	1 510	1 512
53	1 528	1 530	1 532
55	1 548	1 550	1 552
57	1 568	1 570	1 572
59	1 588	1 590	1 592
61	1 608	1 610	1 612

*2 Tracking Error: γ

$$\gamma = \left| 10 \log \frac{P_f}{2.0} \right| [dB]$$


REFERENCE

Document Name	Document No.	
Opto-Electronics Devices Pamphlet	PX10160E	

SAFETY INFORMATION ON THIS PRODUCT

SEMICONDUCTOR LASER

Laser Redission is emitted from this aperture

v	va	rn	ı	n	α

Laser Beam

A laser beam is emitted from this diode during operation.

The laser beam, visible or invisible, directly or indirectly, may cause injury to the eye or loss of evesight.

- Do not look directly into the laser beam.
- Avoid exposure to the laser beam, any reflected or collimated beam.

Caution

GaAs Products

This product uses gallium arsenide (GaAs).

GaAs vapor and powder are hazardous to human health if inhaled or ingested, so please observe the following points.

- Follow related laws and ordinances when disposing of the product. If there are no applicable laws and/or ordinances, dispose of the product as recommended below.
 - Commission a disposal company able to (with a license to) collect, transport and dispose of materials that contain arsenic and other such industrial waste materials.
- 2. Exclude the product from general industrial waste and household garbage, and ensure that the product is controlled (as industrial waste subject to special control) up until final disposal.
- Do not burn, destroy, cut, crush, or chemically dissolve the product.
- Do not lick the product or in any way allow it to enter the mouth.