

# **GaAs INTEGRATED CIRCUIT**

# $\mu$ PG2415TK

#### 0.5 to 6.0 GHz SPDT SWITCH

#### **DESCRIPTION**

The  $\mu$ PG2415TK is a GaAs MMIC SPDT (<u>Single Pole Double Throw</u>) switch for 0.5 to 6.0 GHz applications, including dual-band wireless LAN.

This device operates with dual control switching voltages of 2.7 to 5.3 V. This device can operate at frequencies from 0.5 to 6.0 GHz, with low insertion loss and high isolation.

This device is housed in a 6-pin lead-less minimold package (1511 PKG) and is suitable for high-density surface mounting.

#### **FEATURES**

Switch control voltage : V<sub>cont (H)</sub> = 3.0 V TYP.

: Vcont (L) = 0 V TYP.

Low insertion loss
 : Lins = 0.45 dB TYP. @ f = 2.5 GHz

: Lins = 0.65 dB TYP. @ f = 6.0 GHz

• High isolation : ISL = 28 dB TYP. @ f = 2.5 GHz

: ISL = 26 dB TYP. @ f = 6.0 GHz

• Handling power :  $P_{in}$  (0.1 dB) = +31.0 dBm TYP. @ f = 2.0 to 6.0 GHz

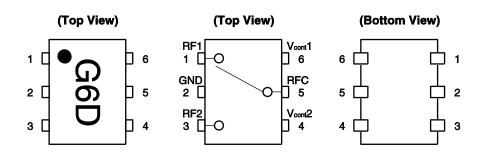
• High-density surface mounting : 6-pin lead-less minimold package (1.5  $\times$  1.1  $\times$  0.55 mm)

#### **APPLICATIONS**

· Dual-band wireless LAN etc.

#### ORDERING INFORMATION

| Part Number  | Order Number   | Package                                       | Marking | Supplying Form                                                                                 |
|--------------|----------------|-----------------------------------------------|---------|------------------------------------------------------------------------------------------------|
| μPG2415TK-E2 | μPG2415TK-E2-A | 6-pin lead-less minimold (1511 PKG) (Pb-Free) | G6D     | Embossed tape 8 mm wide     Pin 1, 6 face the perforation side of the tape     Qty 5 kpcs/reel |


Remark To order evaluation samples, please contact your nearby sales office.

Part number for sample order: µPG2415TK-A

<u>Caution</u> Although this device is designed to be as robust as possible, ESD (Electrostatic Discharge) can damage this device. This device must be protected at all times from ESD. Static charges may easily produce potentials of several kilovolts on the human body or equipment, which can discharge without detection. Industry-standard ESD precautions must be employed at all times.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

## PIN CONNECTIONS AND INTERNAL BLOCK DIAGRAM



| Pin No. | Pin Name            |
|---------|---------------------|
| 1       | RF1                 |
| 2       | GND                 |
| 3       | RF2                 |
| 4       | V <sub>cont</sub> 2 |
| 5       | RFC                 |
| 6       | V <sub>cont</sub> 1 |

## SW TRUTH TABLE

| ON Path | V <sub>cont</sub> 1 | V <sub>cont</sub> 2 |  |
|---------|---------------------|---------------------|--|
| RFC-RF1 | High                | Low                 |  |
| RFC-RF2 | Low                 | High                |  |

# ABSOLUTE MAXIMUM RATINGS (TA = +25°C, unless otherwise specified)

| Parameter                                   | Symbol | Ratings     | Unit |
|---------------------------------------------|--------|-------------|------|
| Switch Control Voltage                      | Vcont  | +6.0 Note   | V    |
| Input Power (V <sub>cont (H)</sub> = 3.0 V) | Pin    | +34.0       | dBm  |
| Input Power (V <sub>cont (H)</sub> = 5.0 V) | Pin    | +35.0       | dBm  |
| Power Dissipation (average)                 | PD     | 0.15        | W    |
| Operating Ambient Temperature               | TA     | -45 to +85  | °C   |
| Storage Temperature                         | Tstg   | -55 to +150 | °C   |

Note  $|V_{cont}1 - V_{cont}2| \le 6.0 \text{ V}$ 

# RECOMMENDED OPERATING RANGE (TA = +25°C, unless otherwise specified)

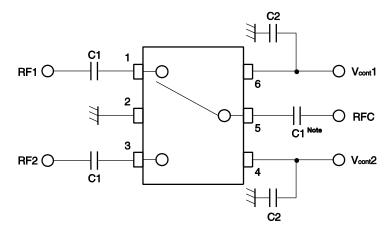
| Parameter                  | Symbol                    | MIN. | TYP. | MAX. | Unit |
|----------------------------|---------------------------|------|------|------|------|
| Operating Frequency        | f                         | 0.5  | 1    | 6.0  | GHz  |
| Switch Control Voltage (H) | V <sub>cont (H)</sub>     | 2.7  | 3.0  | 5.3  | ٧    |
| Switch Control Voltage (L) | V <sub>cont (L)</sub>     | -0.2 | 0    | 0.2  | V    |
| Control Voltage Difference | △Vcont (H),<br>△Vcont (L) | -0.1 | 0    | 0.1  | V    |

Note  $\Delta V \text{cont (H)} = V \text{cont 1 (H)} - V \text{cont 2 (H)}$  $\Delta V \text{cont (L)} = V \text{cont 1 (L)} - V \text{cont 2 (L)}$ 

#### **ELECTRICAL CHARACTERISTICS**

(TA = +25°C,  $V_{cont}$  (H) = 3.0 V,  $V_{cont}$  (L) = 0 V,  $Z_{O}$  = 50  $\Omega$ , DC blocking capacitors = 8 pF, unless otherwise specified)

| Parameter                       | Symbol           | Test Conditions                                                                            | MIN. | TYP.  | MAX. | Unit |
|---------------------------------|------------------|--------------------------------------------------------------------------------------------|------|-------|------|------|
| Insertion Loss 1                | Lins1            | f = 0.5 to 2.0 GHz Note 1                                                                  | -    | 0.40  | 0.65 | dB   |
| Insertion Loss 2                | Lins2            | f = 2.0 to 2.5 GHz                                                                         | -    | 0.45  | 0.70 | dB   |
| Insertion Loss 3                | Lins3            | f = 2.5 to 3.8 GHz                                                                         | =    | 0.55  | 0.80 | dB   |
| Insertion Loss 4                | Lins4            | f = 3.8 to 6.0 GHz                                                                         | =    | 0.65  | 0.90 | dB   |
| Isolation 1                     | ISL1             | f = 0.5 to 2.0 GHz Note 1                                                                  | 25   | 28    | -    | dB   |
| Isolation 2                     | ISL2             | f = 2.0 to 2.5 GHz                                                                         | 25   | 28    | -    | dB   |
| Isolation 3                     | ISL3             | f = 2.5 to 3.8 GHz                                                                         | 25   | 28    | -    | dB   |
| Isolation 4                     | ISL4             | f = 3.8 to 6.0 GHz                                                                         | 22   | 26    | =    | dB   |
| Return Loss 1                   | RL1              | f = 0.5 to 2.0 GHz Note 1                                                                  | 15   | 20    | =    | dB   |
| Return Loss 2                   | RL2              | f = 2.0 to 2.5 GHz                                                                         | 15   | 20    | -    | dB   |
| Return Loss 3                   | RL3              | f = 2.5 to 6.0 GHz                                                                         | 10   | 15    | =    | dB   |
| 0.1 dB Loss Compression         | Pin (0.1 dB)     | f = 0.5 to 2.0 GHz Note 1                                                                  | -    | +32.0 | -    | dBm  |
| Input Power Note 2              |                  | f = 2.0 to 6.0 GHz                                                                         | -    | +31.0 | -    | dBm  |
|                                 |                  | $f = 0.5 \text{ to } 6.0 \text{ GHz}^{\text{Note 1}}, V_{\text{cont (H)}} = 5.0 \text{ V}$ | -    | +35.0 | -    | dBm  |
| 1 dB Loss Compression           | Pin (1 dB)       | f = 0.5 to 2.0 GHz Note 1                                                                  | -    | +34.0 | -    | dBm  |
| Input Power Note 3              |                  | f = 2.0 to 6.0 GHz                                                                         | -    | +34.0 | -    | dBm  |
| Input 3rd Order Intercept Point | IIP <sub>3</sub> | f = 2.5 GHz, Pin = +20 dBm                                                                 | -    | +60   | -    | dBm  |
| 2nd Harmonics                   | 2f <sub>0</sub>  | f = 2.5 GHz, Pin = +20 dBm                                                                 | -    | 80    | ı    | dBc  |
| 3rd Harmonics                   | 3fo              | f = 2.5 GHz, Pin = +20 dBm                                                                 | =    | 80    | =    | dBc  |
| Switch Control Current          | Icont            | No RF input                                                                                | =    | 0.1   | 10   | μΑ   |
| Switch Control Speed            | tsw              | 50% CTL to 90/10% RF                                                                       | -    | 50    | 250  | ns   |

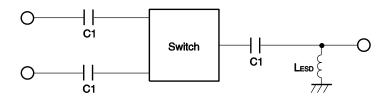

**Notes 1.** DC blocking capacitors = 56 pF at f = 0.5 to 2.0 GHz

- 2. Pin (0.1 dB) is the measured input power level when the insertion loss increases 0.1 dB more than that of the linear range.
- **3.** Pin (1 dB) is the measured input power level when the insertion loss increases 1 dB more than that of the linear range.

Caution It is necessary to use DC blocking capacitors with this device.

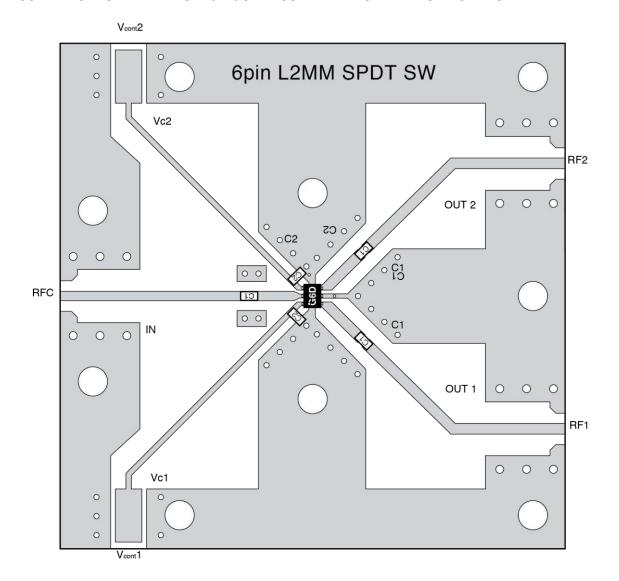
The value of DC blocking capacitors should be chosen to accommodate the frequency of operation, bandwidth, switching speed and the condition with actual board of your system.

#### **EVALUATION CIRCUIT**




**Note** C1 : 0.5 to 2.0 GHz 56 pF : 2.0 to 6.0 GHz 8 pF

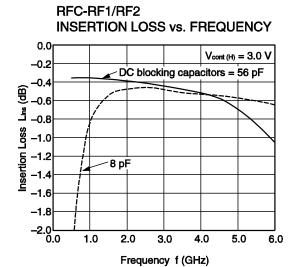
C2:1000 pF

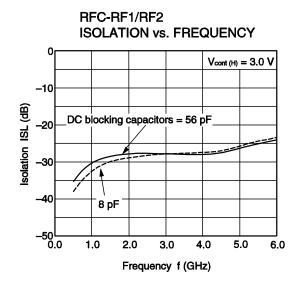

The application circuits and their parameters are for reference only and are not intended for use in actual design-ins

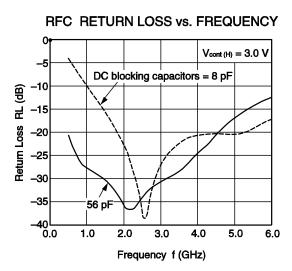
# **APPLICATION INFORMATION**

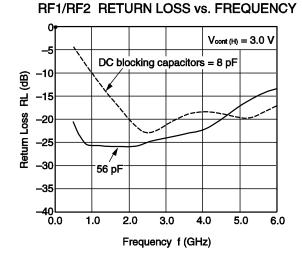


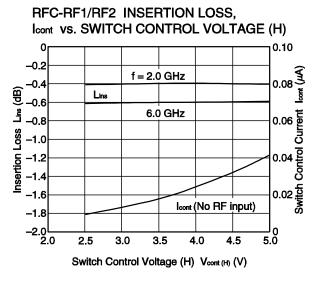
- Lesp provides a means to increase the ESD protection on a specific RF port, typically the port attached to the antenna.
- The value may be tailored to provide specific electrical responses.
- The RF ground connections should be kept as short as possible and connected to directly to a good RF ground for best performance.

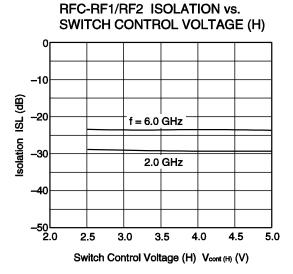

# ILLUSTRATION OF THE TEST CIRCUIT ASSEMBLED ON EVALUATION BOARD



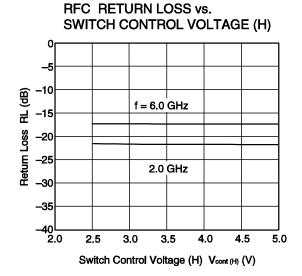


# USING THE EVALUATION BOARD

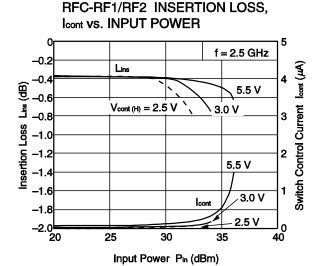

| Symbol | Test Conditions    | Values   |
|--------|--------------------|----------|
| C1     | f = 0.5 to 2.0 GHz | 56 pF    |
|        | f = 2.0 to 6.0 GHz | 8 pF     |
| C2     |                    | 1 000 pF |

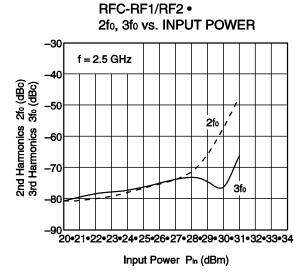

TYPICAL CHARACTERISTICS (TA =  $+25^{\circ}$ C, V<sub>cont</sub> (H) = 3.0 V, V<sub>cont</sub> (L) = 0 V, Z<sub>0</sub> = 50  $\Omega$ , DC blocking capacitors = 8 pF, unless otherwise specified)



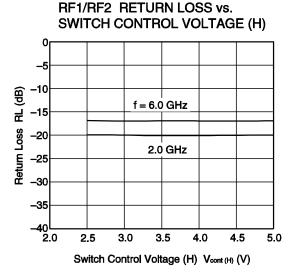


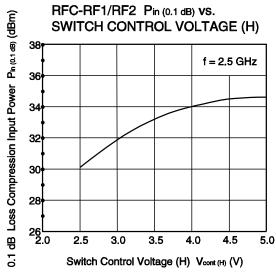



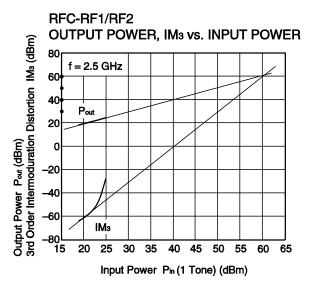





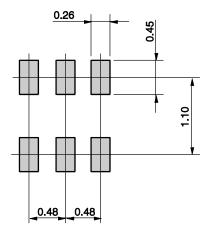


Remark The graphs indicate nominal characteristics.





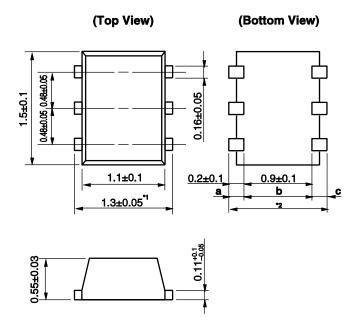

**Remark** The graphs indicate nominal characteristics.








# MOUNTING PAD LAYOUT DIMENSIONS


# 6-PIN LEAD-LESS MINIMOLD (1511 PKG) (UNIT: mm)



**Remark** The mounting pad layout in this document is for reference only.

# PACKAGE DIMENSIONS

# 6-PIN LEAD-LESS MINIMOLD (1511 PKG) (UNIT: mm)



**Remark** Dimension  $^{1}$  is bigger than dimension  $^{2}$  (dimension  $^{2}$  = a + b + c).

# RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office.

| Soldering Method | Soldering Conditions                                                                                                                                                                                                              |                                                                                                                           | Condition Symbol |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------|
| Infrared Reflow  | Peak temperature (package surface temperature) Time at peak temperature Time at temperature of 220°C or higher Preheating time at 120 to 180°C Maximum number of reflow processes Maximum chlorine content of rosin flux (% mass) | : 260°C or below<br>: 10 seconds or less<br>: 60 seconds or less<br>: 120±30 seconds<br>: 3 times<br>: 0.2%(Wt.) or below | IR260            |
| Wave Soldering   | Peak temperature (molten solder temperature) Time at peak temperature Preheating temperature (package surface temperature) Maximum number of flow processes Maximum chlorine content of rosin flux (% mass)                       | : 260°C or below<br>: 10 seconds or less<br>: 120°C or below<br>: 1 time<br>: 0.2%(Wt.) or below                          | WS260            |
| Partial Heating  | Peak temperature (terminal temperature) Soldering time (per side of device) Maximum chlorine content of rosin flux (% mass)                                                                                                       | : 350°C or below<br>: 3 seconds or less<br>: 0.2%(Wt.) or below                                                           | HS350            |

Caution Do not use different soldering methods together (except for partial heating).

#### Caution

GaAs Products

This product uses gallium arsenide (GaAs).

GaAs vapor and powder are hazardous to human health if inhaled or ingested, so please observe the following points.

- Follow related laws and ordinances when disposing of the product. If there are no applicable laws and/or ordinances, dispose of the product as recommended below.
  - Commission a disposal company able to (with a license to) collect, transport and dispose of materials that contain arsenic and other such industrial waste materials.
  - 2. Exclude the product from general industrial waste and household garbage, and ensure that the product is controlled (as industrial waste subject to special control) up until final disposal.
- Do not burn, destroy, cut, crush, or chemically dissolve the product.
- Do not lick the product or in any way allow it to enter the mouth.