

MECHANICAL DATA

Dimensions in mm (inches)

N-CHANNEL DEVICES: 1-4 P-CHANNEL DEVICES: 5-8

				10 = D7		
2	= G3	7	= G5	11 = G7	16	= G1
3	= G4	8	= G6	12 = G8	17	= G2
4	= D4	9	= D6	13 = D8	18	= D2

Pin 14 = N-Channel Common Source (devices 1,2,3,4) Pin 15 = P-Channel Common Source (devices 5,6,7,8)

MULTI CHIP ARRAY 4 COMMON SOURCE P-CHANNEL MOSFETS AND 4 COMMON SOURCE N-CHANNEL FETS

DESCRIPTION

The MCA002 is a ceramic surface mount MOSFET array designed for high reliability applications.

It contains 4 common source P Channel and 4 N Channel common source MOSFETS.

FEATURES

- Ceramic Surface Mount Package
- Screening Options Available

N-Channel Devices

- $V_{(BR)DSS} = 60V$
- $I_D = 200 \text{mA}$
- $RDS_{(ON)MAX} = 5\Omega$
- Common Source Connection

P-Channel Devices

- $V_{(BR)DSS} = -60V$
- $I_D = 200 \text{mA}$
- $RDS_{(ON)MAX} = 10\Omega$
- Common Source Connection

ABSOLUTE MAXIMUM RATINGS

TCASE = 25°C unless otherwise stated		N Channel	P Channel	
V_{DS}	Drain Source Voltage	+60V	-60V	
$\mathbf{V}_{\mathbf{GS}}$	Gate Source Voltage	±30V	±30V	
I_D	Continuous Drain Current (per device) (25°C)	200mA	200mA	
P_D	Power Dissipation (per device)	0.5W	0.5W	
$R_{\Theta j\text{-}c}$	Thermal Resistance (junction to case)	30%	C/W	
$R_{\Theta j\text{-}a}$	Thermal Resistance (junction to ambient)	60%	C/W	
T_j , T_{stg}	Storage, Junction temperature	-55 to	+150℃	

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612. E-mail: sales@semelab.co.uk Website: http://www.semelab.co.uk

ELECTRICAL CHARACTERISTICS

N-Channel (per device) $(T_{case} = 25^{\circ}C \text{ unless otherwise stated})$

	Parameter	Test C	onditions	Min.	Тур.	Max.	Unit		
	Static Electrical Ratings								
V _{(BR)DSS}	Drain – Source Breakdown Voltage	$V_{GS} = 0V$	$I_D = 100 \mu A$	60	100		V		
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}$	$I_D = 1.0 \text{mA}$	0.8	1.6	2.5	V		
I _{GSS}	Gate Body Leakage	$V_{DS} = 0V$	$V_{GS} = \pm 20V$		±1.0	±100	nA		
	Zara Cata Valtaria Drain Current	$V_{DS} = 48V$			0.02	1.0			
I_{DSS}	Zero Gate Voltage Drain Current	$V_{GS} = 0V$	$T_J = 125^{\circ}C$		1.0	100	μΑ		
$I_{D(ON)}$	On-State Drain Current ²	$V_{DS} = 10V$	$V_{GS} = 10V$	750	1000		mA		
		$V_{GS} = 4.5V$	$I_D = 75 \text{mA}$		4	7.5			
$R_{DS(ON)} \\$	Drain – SourceOn – Resistance ¹	$V_{GS} = 10V$	$I_D = 0.2A$		2.5	5.0	Ω		
			$T_J = 125$ °C		4.4				
g_{fs}	Forward Transconductance ¹	$V_{DS} = 10V$	$I_D = 0.5A$	100	230		mS		
g _{os}	Common Source Output Conductance ¹	$V_{DS} = 5V$	$I_D = 50 \text{mA}$		500		μS		
	Dynamic Characteristics								
C _{iss}	Input Capacitance (f = 1Mhz)	$V_{DS} = 25V$	$V_{GS} = 0 V$		35		pF		
C _{oss}	Output Capacitance (f = 1Mhz)	$V_{DS} = 25V$	$V_{GS} = 0 V$		13		pF		
C _{rss}	Reverse Transfer Capacitance (f = 1Mhz)	$V_{DS} = 25V$	$V_{GS} = 0 V$		4		pF		
	Switching Characteristics								
$t_{d(on)}$	Turn-On Time	VDD = 25V	VGEN = 10V		7		nS		
$t_{d(\mathrm{off})}$	Turn-Off Time	$RL = 50\Omega$ $ID = 0.5A$	$RGEN = 10V$ $RGEN = 25\Omega$		7		nS		

Pulsed: pulse duration = $300\mu s$, duty cycle $\leq 2\%$

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612. E-mail: sales@semelab.co.uk Website: http://www.semelab.co.uk

² Pulse width limited by maximum junction temperature

ELECTRICAL CHARACTERISTICS

P-Channel (per device) ($T_{case} = 25^{\circ}C$ unless otherwise stated)

	Parameter	Test C	onditions	Min.	Тур.	Max.	Unit		
	Static Electrical Ratings								
$V_{(BR)DSS}$	Drain – Source Breakdown Voltage	$V_{GS} = 0V$	$I_D = -10\mu A$	-60	-75		V		
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}$	$I_D = -1.0 \text{mA}$	-1.0	-1.7	-2.4	V		
T	Ceta Badul sakara	$V_{DS} = 0V$	$V_{GS}=\pm 20V$		±1.0	±100	nA		
I_{GSS}	Gate Body Leakage	V _{DS} = 0 V	$T_J = 125^{\circ}C$		±5.0	±500	IIA		
T	Zero Gate Voltage Drain Current	$V_{DS} = -48V$			-0.02	-1.0			
I_{DSS}	zero Gate voltage Drain Current	$V_{GS} = 0V$	$T_J = 125^{\circ}C$		-0.2	-100	μΑ		
$I_{D(ON)}$	On-State Drain Current ¹	$V_{DS} = -10V$	$V_{GS} = -4.5V$	-50	-80		mA		
		$V_{GS} = -4.5V$	$I_D = -25 \text{mA}$		11	25			
D	Drain – SourceOn – Resistance ¹	$V_{GS} = -4.5V$	$I_{D} = -0.1A$		8	25			
$R_{\mathrm{DS(ON)}}$		$V_{GS} = -10V$	$I_{D} = -0.2A$		6	10	Ω		
			$T_J = 125^{\circ}C$		12		1		
g_{fs}	Forward Transconductance ¹	$V_{DS} = -10V$	$I_{\rm D} = -0.1 {\rm A}$		90		mS		
g _{os}	Common Source Output Conductance ¹	$V_{DS} = -10V$	$I_{\rm D} = -0.1 {\rm A}$		400		μS		
	Dynamic Characteristics								
Ciss	Input Capacitance (f = 1Mhz)	$V_{DS} = -25V$	$V_{GS} = 0 V$		45		pF		
C _{oss}	Output Capacitance (f = 1Mhz)	$V_{DS} = -25V$	$V_{GS} = 0 V$		22		pF		
C _{rss}	Reverse Transfer Capacitance (f = 1Mhz)	$V_{DS} = -25V$	$V_{GS} = 0 V$		3		pF		
	Switching Characteristics								
t _{d(ON)}	Turn-On Delay Time	VDD = -25V,	$RL = 50\Omega$,		4				
t _r			ID = -0.5A, VGEN = -10V		5		nS		
$t_{d(OFF)}$	Turn-Off Delay Time	D = -0.5A, VC			5				
t _r		RGEN = 25Ω			4				

Pulsed : pulse duration = $300\mu s$, duty cycle $\leq 2\%$

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

² Pulse width limited by maximum junction temperature