

IRF240SMD

MECHANICAL DATA

Dimensions in mm (inches)

0.89 (0.035) 3.70 (0.146) min. 3.70 (0.146) 3.41 (0.134) 3.41 (0.134) 3 4.14 3.84 16.02 (0.631) 15.73 (0.619) 10.69 (0.421) 10.39 (0.409) 9.67 (0.381) 9.38 (0.369) 11.58 (0.456) 11.28 (0.444)

N-CHANNEL POWER MOSFET

V_{DSS} **200V** I_{D(cont)} 13.9A R_{DS(on)} 0.180Ω

FEATURES

- HERMETICALLY SEALED SURFACE **MOUNT PACKAGE**
- SMALL FOOTPRINT EFFICIENT USE OF PCB SPACE.
- SIMPLE DRIVE REQUIREMENTS
- LIGHTWEIGHT
- HIGH PACKING DENSITIES

SMD1 PACKAGE

Pad 1 - Gate

Pad 2 – Drain

Pad 3 - Source

IRFNxxx also available with Note: pins 1 and 3 reversed.

ABSOLUTE MAXIMUM RATINGS (T_{case} = 25°C unless otherwise stated)

$\overline{V_{GS}}$	Gate – Source Voltage	±20V		
I_D	Continuous Drain Current $(V_{GS} = 0, T_{case} = 25^{\circ}C)$	13.9A		
I _D	Continuous Drain Current (V _{GS} = 0 , T _{case} = 100°C)	8.8A		
I _{DM}	Pulsed Drain Current ¹	56A		
P_{D}	Power Dissipation @ T _{case} = 25°C	75W		
	Linear Derating Factor	0.6W/°C		
E _{AS}	Single Pulse Avalanche Energy ²	450mJ		
dv/dt	Peak Diode Recovery ³	5.0V/ns		
T_J , T_stg	Operating and Storage Temperature Range	−55 to 150°C		
T_L	Package Mounting Surface Temperature (for 5 sec)	300°C		
$R_{ hetaJC}$	Thermal Resistance Junction to Case	1.67°C/W		
R _{θJ-PCB}	Thermal Resistance Junction to PCB (Typical)	4°C/W		

Notes

- 1) Pulse Test: Pulse Width \leq 300ms, $\delta \leq$ 2%
- 2) @ V_{DD} = 50V , L \geq 1.5mH , R_G = 25 Ω , Peak I_L = 22A , Starting T_J = 25°C
- 3) @ $I_{SD} \le 13.9 A$, $di/dt \le 150 A/\mu s$, $V_{DD} \le BV_{DSS}$, $T_J \le 150 ^{\circ} C$, SUGGESTED $R_G = 9.1 \Omega$

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612. E-mail: sales@semelab.co.uk

Website: http://www.semelab.co.uk

ELECTRICAL CHARACTERISTICS (T_{amb} = 25°C unless otherwise stated)

	Parameter	Test Conditions		Min.	Тур.	Max.	Unit	
	STATIC ELECTRICAL RATINGS							
BV _{DSS}	Drain – Source Breakdown Voltage	$V_{GS} = 0$	I _D = 1mA	200			V	
ΔBV_{DSS}	Temperature Coefficient of	Reference to 25°C I _D = 1mA			0.00		V//00	
ΔT _J	Breakdown Voltage				0.29	0.29	V/°C	
R _{DS(on)}	Static Drain – Source On–State			0.180				
	Resistance ¹	V _{GS} = 10V	I _D = 13.9A			0.250	Ω	
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$	I _D = 250μA	2		4	V	
9 _{fs}	Forward Transconductance ¹	V _{DS} ≥ 15V	I _{DS} = 8.8A	6.1			S(\Omega)	
I _{DSS}	Zero Gate Voltage Drain Current	V _{GS} = 0	$V_{DS} = 0.8BV_{DSS}$			25	μΑ	
			T _J = 125°C			250		
I _{GSS}	Forward Gate – Source Leakage	V _{GS} = 20V	-			100	nA	
I _{GSS}	Reverse Gate – Source Leakage	V _{GS} = -20V				-100		
	DYNAMIC CHARACTERISTICS	1 00	I					
C _{iss}	Input Capacitance	V _{GS} = 0			1300			
C _{oss}	Output Capacitance	$V_{DS} = 25V$		400		pF		
C _{rss}	Reverse Transfer Capacitance	f = 1MHz		130				
Q _g	·	V _{GS} = 10V	I _D = 13.9A				nC	
	Total Gate Charge ¹	$V_{DS} = 0.5BV_{DSS}$		32		60		
Q _{gs}	Gate - Source Charge 1	I _D = 13.9A		2.2		10.6		
Q _{gd}	Gate - Drain ("Miller") Charge ¹	$V_{DS} = 0.5BV_{DS}$	14.2		37.6	nC		
t _{d(on)}	Turn-On Delay Time	1001/	V _{DD} = 100V			20	ns	
t _r	Rise Time					152		
t _{d(off)}	Turn-Off Delay Time	$I_D = 13.9A$ $R_G = 9.1\Omega$				58		
t _f	Fall Time					67		
	SOURCE - DRAIN DIODE CHARAC	TERISTICS	L					
I _S	Continuous Source Current					13.9		
I _{SM}	Pulse Source Current ²					56	A	
	Diode Forward Voltage	I _S = 13.9A	T _{.J} = 25°C					
V_{SD}		$V_{GS} = 0$				1.5 V		
t _{rr}	Reverse Recovery Time	I _F = 13.9A	T _J = 25°C			500	ns	
Q _{rr}	Reverse Recovery Charge	d _i / d _t ≤ 100A/μs	s V _{DD} ≤ 50V			5.3	μС	
t _{on}	Forward Turn-On Time				Negligible			
	PACKAGE CHARACTERISTICS							
L _D	Internal Drain Inductance (from centre o	ain Inductance (from centre of drain pad to die) urce Inductance (from centre of source pad to end of source bond wire)			0.8		nH	
L _S	Internal Source Inductance (from centre				2.8			

Notes

- 1) Pulse Test: Pulse Width \leq 300ms, $\delta \leq$ 2%
- 2) Repetitive Rating Pulse width limited by maximum junction temperature.

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612.

E-mail: sales@semelab.co.uk Website: http://www.semelab.co.uk