

2N6782LCC4 **IRFE110**

MECHANICAL DATA

Dimensions in mm (inches)

2.16 (0.085) 7.62 (0.300) 7.12 (0.280) 0.33 (0.013) 0.08 (0.003) Rad. 0.43 (0.017) 0.18 (0.007 Rad. 1.65 (0.065) 1.40 (0.055)

GATE Pins 4,5

DRAIN Pins1,2,15,16,17,18 SOURCE Pins 6,7,8,9,10,11,12,13

LCC4

N-CHANNEL POWER MOSFET

V_{DSS} 100V I_{D(cont)} 3.5A R_{DS(on)} 0.6Ω

FEATURES

- SURFACE MOUNT
- SMALL FOOTPRINT
- HERMETICALLY SEALED
- DYNAMIC dv/dt RATING
- AVALANCHE ENERGY RATING
- SIMPLE DRIVE REQUIREMENTS
- LIGHTWEIGHT

ABSOLUTE MAXIMUM RATINGS (T_{case} = 25℃ unless otherwise stated)

V_{GS}	Gate – Source Voltage	±20V		
I_{D}	Continuous Drain Current (V _{GS} = 10V , T _{case} = 25℃)	3.5A		
I _D	Continuous Drain Current $(V_{GS} = 10V, T_{case} = 100^{\circ}C)$	2.25A		
I_{DM}	Pulsed Drain Current ¹	14A		
P_{D}	Power Dissipation @ T _{case} = 25℃	15W		
	Linear Derating Factor	0.09W/℃		
E _{AS}	Single Pulse Avalanche Energy ²	7.0mJ		
dv/dt	Peak Diode Recovery ³	9.0V/ns		
T_J , T_stg	Operating and Storage Temperature Range	-55 to +150℃		
	Surface Temperature (for 5 sec).	300℃		

Notes

1) Pulse Test: Pulse Width $\leq 300 \mu s$, $\delta \leq 2\%$

2) @ $V_{DD} = 25V$, Peak $I_L = 3.1A$, Starting $T_J = 25$ °C

3) @ $I_{SD} \le 3.1A$, $di/dt \le 75A/\mu s$, $V_{DD} \le BV_{DSS}$, $T_J \le 150 \%$, Suggested R $_G = 7.5\Omega$

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612.

E-mail: sales@semelab.co.uk

Website: http://www.semelab.co.uk

2N6782LCC4 IRFE110

ELECTRICAL CHARACTERISTICS (T_{case} = 25°C unless otherwise stated)

	Parameter	Test Cond	litions	Min.	Тур.	Max.	Unit		
	STATIC ELECTRICAL RATINGS	•	•		-				
BV _{DSS}	Drain – Source Breakdown Voltage	$V_{GS} = 0$	I _D = 1mA	100			V		
ΔBV_{DSS}	Temperature Coefficient of	Reference to 25℃			0.40		\/\mathcal{\pi}		
ΔT_{J}	Breakdown Voltage	I _D = 1mA			0.12		V/℃		
R _{DS(on)}	Static Drain - Source On-State	V _{GS} = 10V	I _D = 2.25A			0.6	Ω		
	Resistance ¹	V _{GS} = 10V	I _D = 3.5A			0.69			
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$	I _D = 250μA	2		4	V		
9 _{fs}	Forward Transconductance ¹	V _{DS} ≥ 15V	I _{DS} = 2.25A	8.0			S(^{\overline{O}})		
I _{DSS}	Zero Gate Voltage Drain Current	$V_{GS} = 0$	$V_{DS} = 0.8BV_{DSS}$ $T_{J} = 125$ °C			25 250	μА		
I _{GSS}	Forward Gate – Source Leakage	V _{GS} = 20V	, ,			100	١.		
I _{GSS}	Reverse Gate – Source Leakage	$V_{GS} = -20V$				-100	nA		
	DYNAMIC CHARACTERISTICS						1		
C _{iss}	Input Capacitance	$V_{GS} = 0$			190				
C _{oss}	Output Capacitance	$V_{DS} = 25V$		86		pF			
C _{rss}	Reverse Transfer Capacitance	f = 1MHz			13				
Q_q	Total Gate Charge	V _{GS} = 10V				6.6			
Q_{gs}	Gate – Source Charge	I _D = 3.5A			1.7	nC			
Q_{gd}	Gate - Drain ("Miller") Charge	$V_{DS} = 0.5BV_{DSS}$					3.5		
t _{d(on)}	Turn-On Delay Time	\/ F0\/				15			
t _r	Rise Time	$V_{DD} = 50V$			25	ns			
t _{d(off)}	Turn-Off Delay Time	$I_D = 3.1A$					25		
t _f	Fall Time	$R_G = 7.5\Omega$				20			
	SOURCE - DRAIN DIODE CHARACT	TERISTICS	•						
I _S	Continuous Source Current					3.5	Α		
I_{SM}	Pulse Source Current ²					14] ^		
V _{SD}	Diode Forward Voltage ¹	$I_S = 3.5A$ $V_{GS} = 0$	T _J = 25℃			1.5	V		
t _{rr}	Reverse Recovery Time	I _F = 3.5A	T _J = 25℃			180	ns		
Q _{rr}	Reverse Recovery Charge ¹	d _i / d _t ≤ 100A/μ	us V _{DD} ≤ 50V			2.0	μС		
t _{on}	Forward Turn-On Time				Negligible				
	THERMAL CHARACTERISTICS	-				•			
$R_{\theta JC}$	Thermal Resistance Junction – Case					8.3	9 ΛΛ/		
$R_{\theta JPC}$	Thermal Resistance Junction – PC Bo	ard			27	C/W			

Notes

- 1) Pulse Test: Pulse Width \leq 300ms, $\delta \leq$ 2%
- 2) Repetitive Rating Pulse width limited by maximum junction temperature.

E-mail: sales@semelab.co.uk

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Website: http://www.semelab.co.uk

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612. Docume