Digital Step Attenuator 50Ω DC-2400 MHz

31 dB, 1 dB Step 5 Bit, Serial Control Interface, Single Positive Supply Voltage, +3V

Product Features

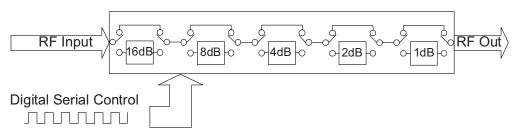
- Single positive supply voltage, +3V
- Immune to latch up
- Excellent accuracy, 0.1 dB Typ
- Serial control interface
- · Low Insertion Loss
- High IP3, +52 dBm Typ
- Very low DC power consumption
- Excellent return loss, 20 dB Typ
- Small size 4.0 x 4.0 mm

Typical Applications

- · Base Station Infrastructure
- · Portable Wireless
- · CATV & DBS
- MMDS & Wireless LAN
- Wireless Local Loop
- UNII & Hiper LAN
- Power amplifier distortion canceling loops

DAT-31-SP+ DAT-31-SP

CASE STYLE: DG983-1 PRICE: \$3.55 ea. QTY. (20)


+RoHS Compliant

The +Suffix identifies RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications

General Description

The DAT-31-SP is a 50Ω RF digital step attenuator that offers an attenuation range up to 31 dB in 1.0 dB steps. The control is a 5-bit serial interface, operating on a single +3 volt supply. The DAT-31-SP is produced using a unique CMOS process on silicon, offering the performance of GaAs, with the advantages of conventional CMOS devices.

Simplified Schematic

For detailed performance specs

P.O. Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500 Fax (718) 332-4661 The Design Engineers Search Engine Provides ACTUAL Data Instantly at minicipality.com IF/RF MICROWAVE COMPONENTS

RF Electrical Specifications, DC-2400 MHz, T_{AMB}=25°C, V_{DD}=+3V

Parameter	Freq. Range (GHz)	Min.	Тур.	Max.	Units
Accuracy @ 1 dB Attenuation Setting	DC-1	_	0.02	0.1	dB
Accuracy @ I db Attendation Setting	1-2.4	_	0.05	0.15	dB
Accuracy @ 2 dB Attenuation Cotting	DC-1	_	0.05	0.15	dB
Accuracy @ 2 dB Attenuation Setting	1-2.4	_	0.15	0.25	dB
Accuracy @ 4 dP Attenuation Catting	DC-1	_	0.07	0.2	dB
Accuracy @ 4 dB Attenuation Setting	1-2.4	_	0.15	0.25	dB
Accuracy @ 8 dB Attenuation Setting	DC-1	_	0.03	0.2	dB
Accuracy @ 6 db Attendation Setting	1-2.4	_	0.15	0.25	dB
Accuracy @ 16 dB Attenuation Setting	DC-1	_	0.1	0.3	dB
Accuracy @ 16 db Attendation Setting	1-2.4	_	0.15	0.3	dB
Insertion Loss (note 1) @ all attenuator set to 0dB	DC-1	_	1.3	1.9	dB
Insertion Loss (***** 7 @ all attenuator set to odb	1-2.4	_	1.6	2.4	dB
Input IP3 (note 2) (at Min. and Max. Attenuation)	DC-2.4	_	+52	_	dBm
Input Power @ 0.2dB Compression (note 2) (at Min. and Max. Attenuation)	DC-2.4	_	+24	_	dBm
VSWR	DC-1	_	1.2	1.5	_
vovvn	1-2.4	_	1.2	1.5	_

DC Electrical Specifications

Parameter	Min. Typ.		Max.	Units
V _{DD} , Supply Voltage	2.7	3	3.3	V
IDD, Supply Current, quiescent (note 3)	_	_	100	μА
Control Input Low	_	_	0.3xV _{DD}	V
Control Input High	0.7xV _{DD}	_	_	V
Control Current	_	_	1	μΑ

Notes:

- 1. I. Loss values are de-embedded from test board Loss (test board's Insertion Loss: 0.10dB @100MHz, 0.35dB @1000MHz, 0.60dB @2400MHz, 0.75dB @4000MHz).
- 2. Input IP3 and 1dB compression degrades below 1 MHz.
- 3. During turn-on and transition between attenuation states, device may draw up to 2mA.

Switching Specifications

Parameter	Min.	Тур.	Max.	Units
Switching Speed, 50% Control to 0.5dB of Attenuation Value	_	1.0	_	μSec
Switching Control Frequency	_	_	25	KHz

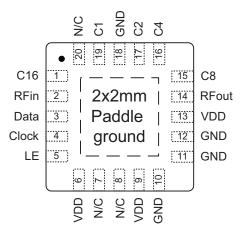
Absolute Maximum Ratings

Parameter	Ratings
Operating Temperature	-40°C to 85°C
Storage Temperature	-55°C to 100°C
V _{DD}	-0.3V Min., 4V Max.
Voltage on any input	-0.3V Min., VDD+0.3V Max.
ESD, HBM	500V
ESD, MM	100V
Input Power	+24dBm

Permanent damage may occur if any of these limits are exceeded.

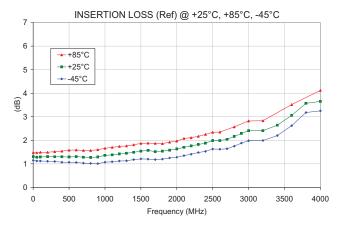
For detailed performance specs & shopping online see web site

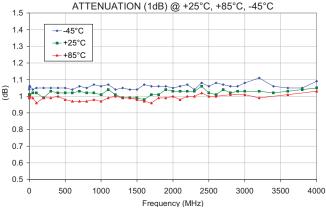
P.O. Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500 Fax (718) 332-4661 The Design Engineers Search Engine Provides ACTUAL Data Instantly at minicipality.com

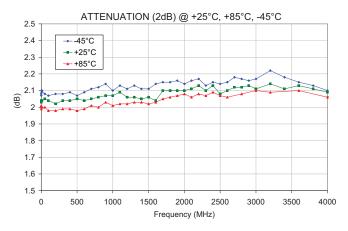

Pin Description

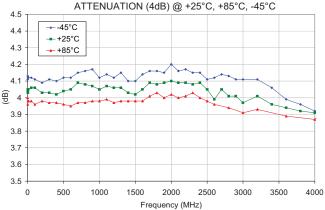
Function	Pin Number	Description
C16	1	Control for Attenuation bit, 16dB (Notes 3,4)
RF in	2	RF in port (Note 1)
Data	3	Serial Interface data input (Note 3)
Clock	4	Serial Interface clock input
LE	5	Latch Enable Input (Note 2)
V _{DD}	6	Power Supply
N/C	7	Not connected
N/C	8	Not connected
V_{DD}	9	Power Supply
GND	10	Ground connection
GND	11	Ground connection
GND	12	Ground connection (Note 7)
V_{DD}	13	Power Supply
RF out	14	RF out port (Note 1)
C8	15	Control for attenuation bit, 8 dB (Note 4)
C4	16	Control for attenuation bit, 4 dB (Note 4)
C2	17	Control for attenuation bit, 2 dB (Note 4)
GND	18	Ground Connection
C1	19	Control for attenuation bit, 1 dB (Note 4)
N/C	20	Not connected (Note 5)
GND	Paddle	Paddle ground (Note 6)

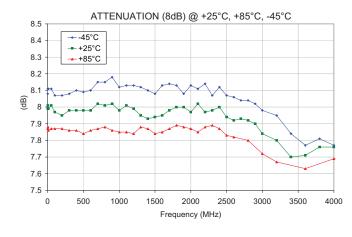
Notes:

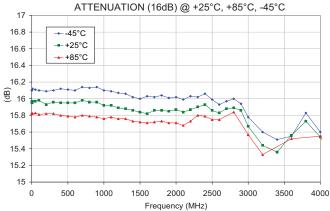

- 1. Both RF ports must be held at 0VDC or DC blocked with an external series capacitor.
- 2. Latch Enable (LE) has an internal 100K Ω resistor to V_{DD} .
- 3. Place a $10 \text{K}\Omega$ resistor in series, as close to pin as possible to avoid freq. resonance.
- 4. Refer to Power-up Control Settings.
- 5. Place a shunt $10K\Omega$ resistor to GND.
- 6. The exposed solder pad on the bottom of the package (See Pin Configuration) must be grounded for proper device operation.
- 7. Ground must be less than 80 mil (0.08") from Pin 12 for proper device operation.

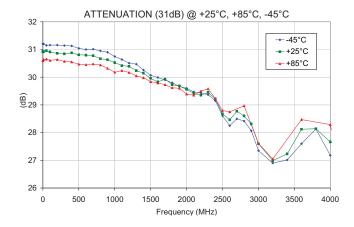

Pin Configuration (Top View)

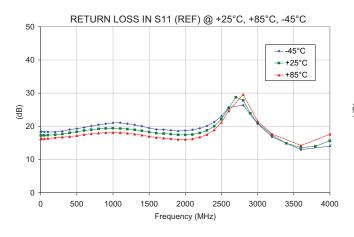


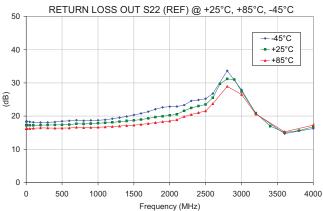

For detailed performance specs & shopping online see web site

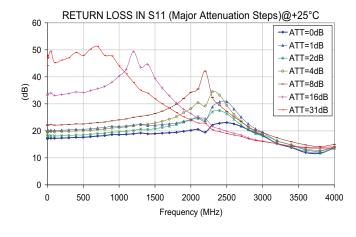

Typical Performance Curves

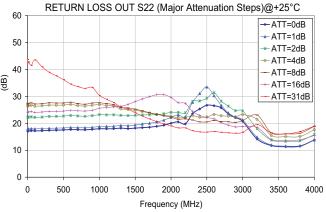


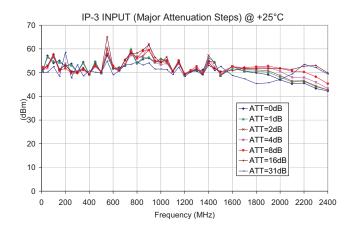


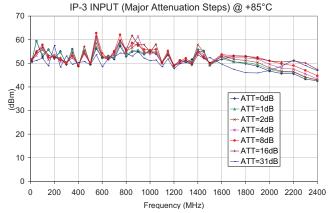


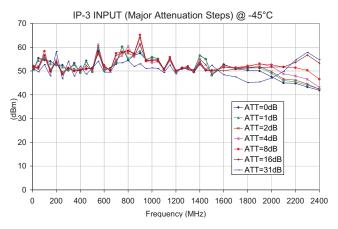

For detailed performance specs & shopping online see web site

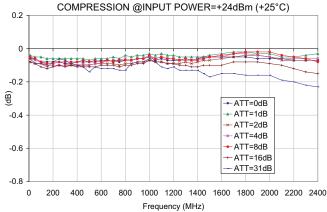

P.O. Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500 Fax (718) 332-4661 The Design Engineers Search Engine Provides ACTUAL Data Instantly at minicipality.com

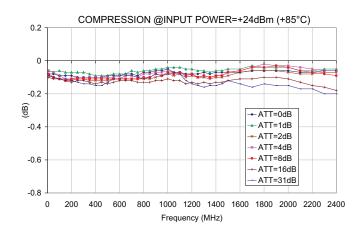

Typical Performance Curves

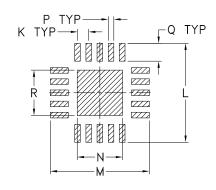





For detailed performance specs & shopping online see web site

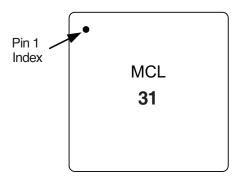

P.O. Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500 Fax (718) 332-4661 The Design Engineers Search Engine Provides ACTUAL Data Instantly at minicipality.com


Typical Performance Curves


For detailed performance specs & shopping online see web site

P.O. Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500 Fax (718) 332-4661 The Design Engineers Search Engine Provides ACTUAL Data Instantly at minicircuits.com

Outline Drawing (DG983-1)

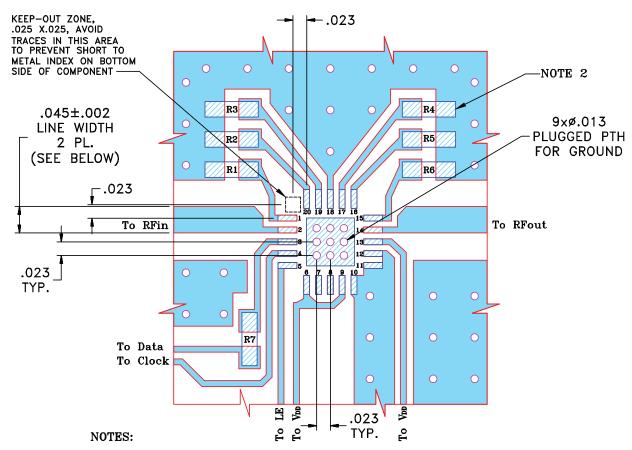


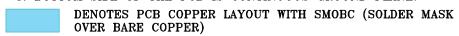
PCB Land Pattern

Suggested Layout,
Tolerance to be within ±.002

Device Marking

Outline Dimensions (inch)


А	В	С	D	Е	F	G	Н	J	К	L	М	N	Р	Q	R	WT. GRAMS
.157	.157	.035	.008	.081	.081	.010	_	.022	.020	.177	.177	.081	.010	.032	.081	.04
4.00	4.00	0.90	0.20	2.06	2.06	0.25	_	0.56	0.50	4.50	4.50	2.06	0.25	0.81	2.06	.04


For detailed performance specs

Suggested Layout for PCB Design (PL-191)

The suggested Layout shows only the footprint area of the DAT, and the components located near this area (i.e.: R1-R7). For the complete Layout, see photo and schematic diagram on page 11 of 12.

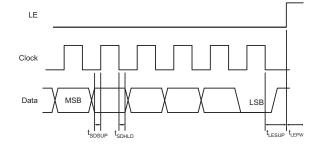
- 1. TRACE WIDTH IS SHOWN FOR FR4 WITH DIELECTRIC THICKNESS. .025"±.002". COPPER: 1/2 OZ. EACH SIDE. FOR OTHER MATERIALS TRACE WIDTH MAY NEED TO BE MODIFIED.
- 2. 0603 SIZE CHIP FOOT PRINTS SHOWN FOR REFERENCE, VALUES OF RESISTORS WILL VARY BASED ON APPLICATION.
- 3. BOTTOM SIDE OF THE PCB IS CONTINUOUS GROUND PLANE.

For detailed performance specs & shopping online see web site

Simplified Schematic

The DAT-31-SP Serial interface consists of 5 control bits that select the desired attenuation state, as shown in Table 1: Truth Table

Table 1. Truth Table								
Attenuation State	C16	C8	C4	C2	C1			
Reference	0	0	0	0	0			
1 (dB)	0	0	0	0	1			
2 (dB)	0	0	0	1	0			
4 (dB)	0	0	1	0	0			
8 (dB)	0	1	0	0	0			
16 (dB)	1	0	0	0	0			
31 (dB)	1	1	1	1	1			
Note: Not all 32	Note: Not all 32 possible combinations of C1 - C16 are shown in table							


The serial interface is a 5-bit serial in, parallel-out shift register buffered by a transparent latch.

It is controlled by three CMOS-compatible signals: Data, Clock, and Latch Enable (LE). The Data and Clock inputs allow data to be serially entered into the shift register, a process that is independent of the state of the LE input.

The LE input controls the latch. When LE is HIGH, the latch is transparent and the contents of the serial shift register control the attenuator. When LE is brought LOW, data in the shift register is latched.

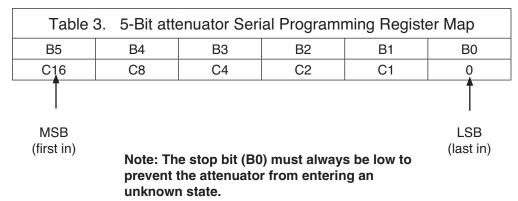
The shift register should be loaded while LE is held LOW to prevent the attenuator value from changing as data is entered. The LE input should then be toggled HIGH and brought LOW again, latching the new data. The timing for this operation is defined by Figure 1 (Serial Interface Timing Diagram) and Table 2 (Serial Interface AC Characteristics).

Figure 1: Serial Interface Timing Diagram

Table 2. Serial Interface AC Characteristics							
Symbol	Parameter	Min.	Max.	Units			
f _{clk}	Serial data clock frequency (Note 1)		10	MHz			
t _{clkH}	Serial clock HIGH time	30		ns			
t _{clkL}	Serial clock LOW time	30		ns			
t _{LESUP}	LE set-up time after last clock falling edge	10		ns			
t _{LEPW}	LE minimum pulse width	30		ns			
t _{SDSUP}	Serial data set-up time before clock rising edge	10		ns			
t _{SDHLD}	Serial data hold time after clock falling edge	10		ns			
Note 1. fclk verif	ied during the functional p	attern tes	t. Serial	programming			

Note 1. tclk verified during the functional pattern test. Serial programming sections of the functional pattern are clocked at 10MHz to verify fclk specification.

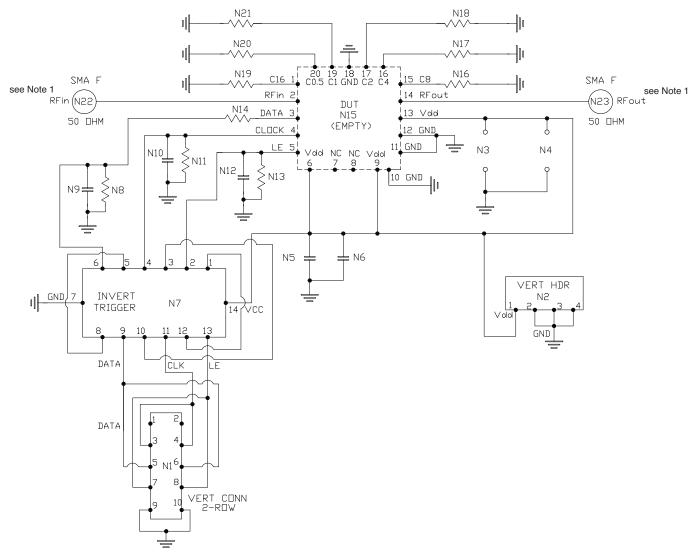
For detailed performance specs & shopping online see web site


P.O. Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500 Fax (718) 332-4661 The Design Engineers Search Engine Provides ACTUAL Data Instantly at minicipality.

Digital Step Attenuator

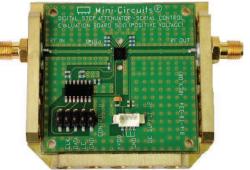
The DAT-31-SP, uses a common 5-bit serial word format, as shown in Table 3: 5-Bit attenuator Serial Programming Register Map.

The first bit, the MSB, corresponds to the 16-dB Step and the B1 bit corresponds to the 1 dB step.


Power-up Control Settings

The DAT-31-SP always assumes a specifiable attenuation setting on power-up, allowing a known attenuation state to be established before an initial serial control word is provided.

When the attenuator powers up, the five control bits are set to whatever data is present on the five data inputs (C1 to C16).


This allows any one of the 32 attenuation settings to be specified as the power-up state.

TB-334 Evaluation Board Schematic Diagram

Note 1: Both RF ports must be held at 0VDC or DC blocked with an external series capacitor.

Bill of Materials						
N8, N11, N13, N14, N16-N21	Resistor 0603 10 KOhm +/- 1%					
N5, N9, N10 & N12	NPO Capacitor 0603 100pF +/- 5%					
N6	Tantalum Capacitor 0805 100nF +/- 10%					
N7	Hex Invert Schmitt Trigger MSL1					

TB-334

For detailed performance specs

P.O. Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500 Fax (718) 332-4661 The Design Engineers Search Engine Provides ACTUAL Data Instantly at minicircuits.com IF/RF MICROWAVE COMPONENTS

Tape and Reel Packaging Information

Table T&R

TR No.	No. of Devices	Reel Size	Tape Width	Pitch	Unit Orientation
	Small quantity standards 20, 50, 100, 200	7 inch			Таре
F87	3000 (Standard)	13 inch	12 mm	8 mm	Cavity Direction of Feed →