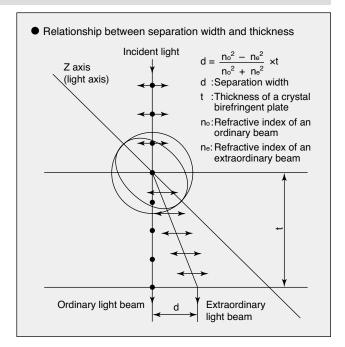
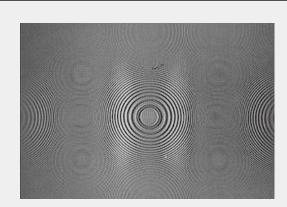


■ Optical Low-pass Filter


Terms and Definitions

Optical Low-pass Filter: This uses elements that separate ordinary and extraordinary beams of incident light to remove pseudo-signals.

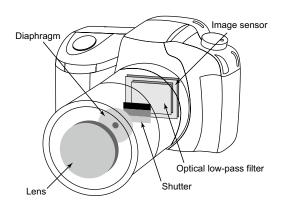

Separation Width: The distance between the ordinary and extraordinary beams separated when light passes through an optical low-pass filter, and this is proportional to the width of the low-pass filter.

Pseudo-signal: Generated by solid-state image pickup devices, pseudo-signals causes horizontal lines to look jagged or the black-and-white lattice fringe to be colored.

Spectral Characteristic: This indicates transmittance with respect to light wavelength. A coating or glass is used for an optical low-pass filter in order to block out near-infrared light beams.

Example of how pseudo-signals are removed

CZP chart photographed with no optical low-pass filter used



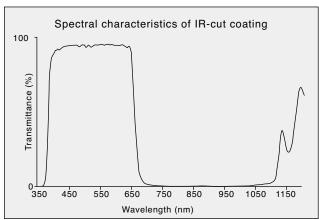
CZP chart photographed with an optical low-pass filter used

(* CZP: Acronym of Circular Zone Plate)

Application

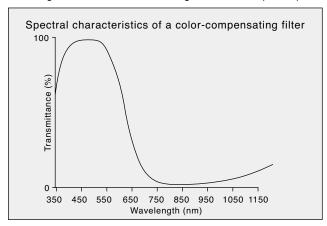
As shown in the figure below, this filter is used mainly as a spatial frequency low-pass filter for removing pseudo-signals from a camera.

Optical Components



■ Optical Low-pass Filter

Features


Single Plate-type Optical Low-pass Filter

- 1. A computer controlled grown synthetic quartz crystal ensures this filter has excellent characteristics as a birefringent plate.
- 2. IR-cut, AR coating, ITO Film and water-repellency coating are available upon request.

Bonding-type Optical Low-pass Filter

- Pseudo-signals can be removed by combining a crystal phase plate (crystal wavelength plate), and an optical low-pass filter in the horizontal, vertical, or any direction of your choice.
- 2. Filter glass combination and coating are available upon request.

Standard specifications

Single Plate-type Optical Low-pass Filter

Specifications	Standards					
Separation width accuracy (thickness accuracy)	Specified separation width $\pm 0.5 \ \mu m$ (Specified thickness $\pm 0.05 \ mm$)					
Outline size	Round plate of φ5 to 30 mm Square plate of 5 x 5 to 40.5 x 48 mm					
Light axis accuracy	44°50'±60'					
Flatness	Max. 10 Newton rings (λ = 589 nm)					

Standard outline size (mm)
(1/2-inch size)
9×10 11×12
(1/3-inch size)
8.5×9
(1/4-inch size)
7.3×7.8
(1/5-inch size)
5.0×5.5

Low-pass filters of other outline sizes can be manufactured upon request.

Bonding-type Optical Low-pass Filter

Specifications	Standards				
Outline size	Round plate of φ5 to 30 mm Square plate of 5 x 5 to 40.5 x 48 mm				
Light axis accuracy	44°50'±60'				
Optical axis bonding accuracy	Specified angle ±60'				
Flatness	Max. 20 Newton rings (λ = 589 nm)				

Standard outline size (mm) (1/2-inch size)

(1/2-IIICH SIZE)

9×10 11×12

(1/3-inch size)

8.5×9

(1/4-inch size)

7.3×7.8

(1/5-inch size)

5.0×5.5

(For single-lens reflex DSC)

22×28 25.3×29.5 28×40

Bonding-type low-pass filters of other outline sizes can be manufactured upon request.

Environment Resistance

The following reliability tests guarantee the specified optical characteristics of NDK's optical components.

, , , , , , , , , , , , , , , , , , , ,	·
Subjected to high temperature	For 96 hours at +85 °C
Subjected to low temperature	For 96 hours at -40 °C
Subjected to high temperature and high humidity	For 96 hours at +60 °C and 95 %
Heat shock	10 cycles (one cycle is conducted for 30 minutes at -40 °C and 30 minutes at +85 °C)
Mechanical strength	No flaws after the surface is rubbed with absorbent cotton

Optical Components

■ Optical Low-pass Filter

How to Determine Optical Low-pass Filter Specifications

When placing an order or asking for information, please inform us of the following items. (Check the boxes.)

- 1 - 3	,			<u> </u>					,	
1. Size of CC] 1/2 inch		: 🗆 1/3	3 inc	ch			: □ 1/4 inch	: □ 1/5 inch
2. Number of	pixels:									
3. CCD mode	el name:							_		
4. Infrared ab	sorption filter	name:								
5. Coating										
				□Ab	sen	t				
	(\	When coating	is prese	nt)						
	• /	AR single laye	er	□ One	e su	rfac	е		: ☐ Both surfaces	
	• /	AR multi-layer	r	□ One	e su	rfac	е		: \square Both surfaces	
	•1	R-Cut								
	•(Others								
6. Dimension	s (part compo	sition)								
	æ) × (b) × (c) : _								
					A ↓	B ↓	C I	D E		
	_									
			(a)						
								•		
	b				ر ا	(c)			
	•		1		_			_	1	

				Angle between the Light Axis	In-surface Rotation Angle	Coating		
	Part Name	Thickness	Tolerance	and the Principal Surface		A : AR single layer B : AR multi-lay D : None E : Others	er C: IR-Cut coating	
Α						Both surfaces/One surface	A•B•C•D•E	
В						Both surfaces/One surface	A•B•C•D•E	
С						Both surfaces/One surface	A•B•C•D•E	
D						Both surfaces/One surface	A•B•C•D•E	
Е						Both surfaces/One surface	A • B • C • D • E	

^{*} Concerning optical low-pass filters other than square ones, please inform us of your individual specifications.

Optical Components

■ λ/4 and λ/2 Wavelength Plates

Terms and Definitions

Crystal Wavelength Plate: An element that uses the velocity difference between ordinary and extraordinary light beams to create a phase difference between both beams; the difference is obtained by using the birefringence of a crystal. When this characteristic is used, a $\lambda/4$ wavelength plate converts linearly-polarized light into circularly-polarized light, and a $\lambda/2$ wavelength plate converts circularly-polarized light into linearly-polarized light with its polarization plane rotated by 90 degrees.

Wavefront aberration: This indicates the Peak-to-Valley difference of a measured wavefront as a unit of design wavelength: the Zygo Corporation's phase interference system is used to provide the data.

P - V = (maximum phase angle - minimum phase angle)

Extinction Ratio: This indicates a value for the phase accuracy of a wavelength plate, and the conversion equation of the extinction ratio V [%] and phase difference Γ [deg] is as follows:

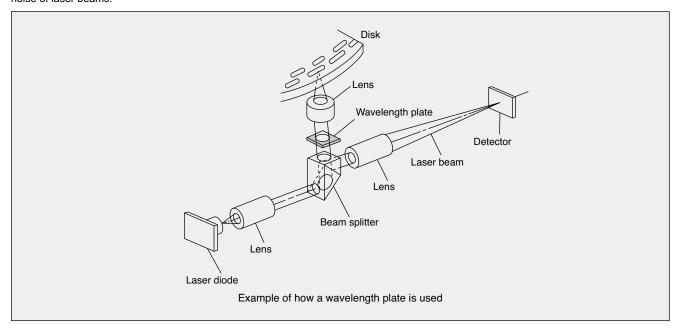
$$V = \frac{I_0, 0 - I_0, 90}{I_0, 0 + I_0, 90}$$

$$\Gamma = \frac{360}{\lambda} (n_e - n_o) \times t$$

Io, 0 : Output in a parallel Nicol state

 $\ensuremath{\mathsf{I}}_{\!\raisebox{1pt}{\text{o}}}$, 90 : Output in an orthogonal Nicol state

 n_{e} : Refractive index of an extraordinary beam


 $n_{\mbox{\tiny 0}}$: Refractive index of an ordinary beam

t: Thickness of a phase plate

λ : Design wavelength

Application

As shown in the figure below, wavelength plates are used mainly for picking up optical information files (DVD, etc) to prevent the back-talk noise of laser beams.

