Variable Transformers
Series $1200 \cdot 5.0$ to 12.0 Amperes

1000/1200 Series

Motorized Single, Two and Three Ganged, Uncased

Motorized Single, Two and Three Ganged, Cased

1220BCT-2
15M1010B-2

1200 Series

The 1210B operates on 120 volts and is rated for constant current of 12 amperes. The 1220B operates on 240 volts and constant current of 5 amperes. The 1210B and 1220B operate from 0 to line voltage only. There is no reduction in allowable output current up to 1500 hertz.

Uncased models have the shaft extending from the base end. This shaft is fully adjustable and can be extended from either end for general utility mounting. Cased styles, which have a "CT" suffix, feature the protective screening over the coil assembly and a terminal box cover with knock-outs to
accept conduit.
Motor driven units are available in single, two and three ganged assemblies; cased or uncased styles as identified by the prefix " M " in the type number. If a motor driven model is ordered, be sure to prefix the part number with the desired travel time from 0 to maximum of $5,15,30$, or 60 seconds.

The synchronous motor is designed for operation on 120 volts, 50/60 hertz single phase lines and draws approximately 0.3 amperes.

PART NO.	WIRING	INPUT		OUTPUT					SHAFT ROTATION FOR VOLTAGE INCREASE	TERMINAL CONNECTIONS (For increasing Voltage) As Viewed from Base End			$\begin{gathered} \text { SCHE- } \\ \text { MATIC } \\ (\mathrm{Pg} 8 \& 9) \end{gathered}$	$\begin{aligned} & \text { NET } \\ & \text { WT. } \\ & \text { LBS. } \end{aligned}$	(Max) MOTOR DRIVEN
		VOLTS	HERTZ	VOLTS	CONSTANT CURRENT LOAD		$\begin{gathered} \text { CONSTANT } \\ \text { IMPEDANCE } \\ \text { LOAD } \end{gathered}$								
							Input	Jumper-		Output					
					$\begin{aligned} & \text { MAX } \\ & \text { AMPS } \end{aligned}$	$\begin{aligned} & \text { MAX } \\ & \text { KVA } \end{aligned}$					$\begin{aligned} & \text { MAX } \\ & \text { AMPS } \end{aligned}$	$\begin{aligned} & \text { MAX } \\ & \text { KVA } \end{aligned}$			
$\begin{array}{\|c\|} \text { 1210B } \\ 1210 B C T \\ \text { M1210B } \\ \text { M1210BCTt } \\ \hline \end{array}$	Single Phase	120	60	0-120	12	1.44	15	1.80	CW	1-4	-	4-3	13	$101 / 4$	163/4
									CCW	1-4	-	1-3			
$\left\lvert\, \begin{gathered} \text { 1210B-2 } \\ \text { 1210BCT-2 } \\ \text { M1210B-2† } \\ \text { M1210BCT-2 } \end{gathered}\right.$	Single Phase Series	240	60	0-240	12	2.88	15	3.60	CW	1-1	4-4	3-3	13 \& 4	22 1/2	$303 / 4$
									CCW	4-4	1-1	3-3			
	Three Phase Open Delta π	120++	60	0-120	12	2.49	15	3.12	CW	1-4-1	4-4	3-4-3	13 \& 5		
									CCW	4-1-4	1-1	3-1-3			
1210B-3 1210BCT-3 M1210B-3 M1210BCT-3 +	Three Phase Wye π	240++	60	0-240	12	4.96	15	6.24	CW	1-1-1	4-4-4	3-3-3	13 \& 6	$341 / 2$	$421 / 4$
									CCW	4-4-4	1-1-1	3-3-3			
3PN1210B	Single Phase	120	60	0-120	12 \ddagger	1.44	15	1.80	CW	$\begin{aligned} & \text { LINE CORD \& } \\ & \text { RECEPTACLE } \end{aligned}$			11	$101 / 4$	-
$12220 B$ 120BCT M1220B \dagger M1220BCT t	Single Phase	240	60	0-240	5.0	1.20	7.0	1.68	CW	1-4	-	4-3	13	$101 / 4$	163/4
									CCW	1-4	-	1-3			
$\begin{gathered} 1220 \mathrm{~B}-2 \\ \text { 1220BCT-2 } \\ \text { M12200B-2† } \\ \text { M1220BCT-2t } \end{gathered}$	Single Phase Series	480	60	0-480	5.0	2.40	7.0	3.36	CW	1-1	4-4	3-3	13 \& 4	22 1/2	$303 / 4$
									CCW	4-4	1-1	3-3			
	Three Phase	240++	60	0-240	5.0	2.08	7.0	2.91	CW	1-4-1	4-4	3-4-3	13 \& 5		
	Open Delta I								CCW	4-1-4	1-1	3-1-3			
1220B-3 $1220 B C T-3$	Three	480++	60	0-480	5.0	4.16	7.0	5.82	CW	1-1-1	4-4-4	3-3-3	13 \& 6	$341 / 2$	$421 / 4$
$\begin{gathered} \text { M1220B-3才 } \\ \text { M1220BCT-3 } \end{gathered}$	Wyen								CCW	4-4-4	1-1-1	3-3-3			
3PN1220B	Single Phase	240	60	0-240	$5.0 \ddagger$	1.20	7.0	1.68	CW	LINE CORD \& RECEPTACLE			11	$101 / 4$	-

- Jumper provided in the standard common position and should be moved or removed as required.
++ Line to line voltage
\ddagger Unit is fused for the constant current rating at the factory.
\dagger Motor driven units use terminal connections for CCW increasing voltage, as viewed from the base end. See Figure 23 on page 9 for motor wiring.
π If ganged units are used in a system that ordinarily has a common neutral or ground between source and load, the neutral or ground must be connected to the common terminals of the variable transformer assembly. If the system has no neutral, the load must be balanced or the transformers will be damaged.
\# Maximum output current in output voltage range from 0 to 25% above line voltage. At higher output voltages, the output current must be reduced according to the derating curve, Figure B, page 6.

