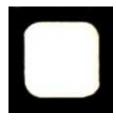


Electrical Datasheet*


GB50SLT12-CAL

Silicon Carbide Power Schottky Diode Chip

 V_{RRM} = 1200 V V_{F} = 1.5 V I_{F} = 50 A Q_{C} = 247 nC

Features

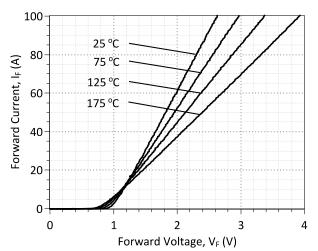
- 1200 V Schottky rectifier
- 175 °C maximum operating temperature
- Electrically isolated base-plate
- Positive temperature coefficient of V_F
- · Fast switching speeds
- Superior figure of merit Q_C/I_F

Advantages

- Improved circuit efficiency (Lower overall cost)
- Significantly reduced switching losses compare to Si PiN diodes
- Ease of paralleling devices without thermal runaway
- · Smaller heat sink requirements
- Low reverse recovery current
- · Low device capacitance

Applications

- Down Hole Oil Drilling, Geothermal Instrumentation
- · High Voltage Multipliers
- Military Power Supplies


Maximum Ratings at T_j = 175 °C, unless otherwise specified

Parameter	Symbol	Conditions	Values	Unit	
Repetitive peak reverse voltage	V_{RRM}		1200	V	
Continuous forward current	l _F	T _C ≤ 135 °C	50	Α	
RMS forward current	I _{F(RMS)}	T _C ≤ 135 °C	87	Α	
Surge non-repetitive forward current, Half Sine	1	T_C = 25 °C, t_P = 10 ms	350	۸	
Wave	I _{F,SM}	$T_{\rm C}$ = 135 °C, $t_{\rm P}$ = 10 ms	313	А	
Non-repetitive peak forward current	$I_{F,max}$	T_{C} = 25 °C, t_{P} = 10 μ s	1625	Α	
l ² t value	∫i² dt	T_C = 25 °C, t_P = 10 ms	tbd	A^2S	
Power dissipation	P _{tot}	T _C = 25 °C	620	W	
Operating and storage temperature	T_{j} , T_{stg}		-55 to 175	°C	

Electrical Characteristics at T_j = 175 °C, unless otherwise specified

Parameter	Symbol	Conditions -		Values		Unit	
	Symbol			min.	typ.	max.	Oiiit
Diode forward voltage	V _F	I _F = 50 A, T _j = 25 °C 1		1.35	1.51	1.80	V
		I _F = 50 A, T _j = 175 °C		2.05	2.31	2.75	
Reverse current	I_R	$V_R = 1200 \text{ V}, T_j = 25 ^{\circ}\text{C}$		200	1000	μΑ	
		$V_R = 1200 \text{ V}, T_j = 175 ^{\circ}\text{C}$		340	2650		
Total capacitive charge	Q_{C}	$I_F \le I_{F,MAX}$ $dI_F/dt = 200 \text{ A/µs}$	V _R = 400 V		158		nC
Switching time	t _s	T _i = 175 °C	V _R = 400 V		50		ns
	С	$V_R = 1 \text{ V, } f = 1 \text{ MHz, } T_j = 25 ^{\circ}\text{C}$		2940		pF	
Total capacitance		$V_R = 400 \text{ V}, f = 1 \text{ MHz}, T_j = 25 ^{\circ}\text{C}$		203			
		V _R = 1000 V, f = 1 MH	z, T _j = 25 °C		142		

^{*}For chip size and metallization, please refer to the mechanical datasheet (must have a non-disclosure agreement with GeneSiC Semiconductor).

Figure 1: Typical Forward Characteristics

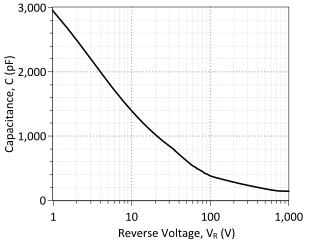


Figure 3: Typical Junction Capacitance vs Reverse Voltage Characteristics

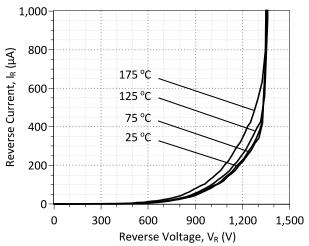


Figure 2: Typical Reverse Characteristics

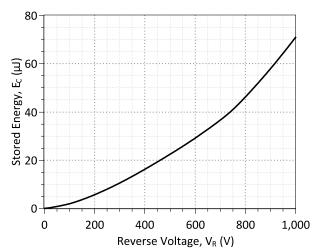


Figure 4: Typical Switching Energy vs Reverse Voltage Characteristics

Revision History							
Date	Revision	Comments	Supersedes				
2013/09/18	0	Initial Release					

Published by GeneSiC Semiconductor, Inc. 43670 Trade Center Place Suite 155 Dulles, VA 20166

GeneSiC Semiconductor, Inc. reserves right to make changes to the product specifications and data in this document without notice.

GeneSiC disclaims all and any warranty and liability arising out of use or application of any product. No license, express or implied to any intellectual property rights is granted by this document.

Unless otherwise expressly indicated, GeneSiC products are not designed, tested or authorized for use in life-saving, medical, aircraft navigation, communication, air traffic control and weapons systems, nor in applications where their failure may result in death, personal injury and/or property damage.

SPICE Model Parameters

Copy the following code into a SPICE software program for simulation of the GB50SLT12-CAL device.

```
MODEL OF GeneSiC Semiconductor Inc.
     $Revision: 1.0
     $Date: 04-SEP-2013
                               $
    GeneSiC Semiconductor Inc.
    43670 Trade Center Place Ste. 155
    Dulles, VA 20166
    httphttp://www.genesicsemi.com/index.php/sic-products/schottky
    COPYRIGHT (C) 2013 GeneSiC Semiconductor Inc.
     ALL RIGHTS RESERVED
* These models are provided "AS IS, WHERE IS, AND WITH NO WARRANTY
* OF ANY KIND EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED
* TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE."
* Models accurate up to 2 times rated drain current.
* Start of GB50SLT12-CAL SPICE Model
.SUBCKT GB50SLT12 ANODE KATHODE
R1 ANODE INT R=((TEMP-24)*9.39E-05); Temperature Dependant Resistor
D1 INT KATHODE GB50SLT12 25C; Call the 25C Diode Model
.MODEL GB50SLT12 25C D
         1.99E-16
+ IS
                          RS
                                   0.015652965
                         IKF
                                   1000
+ N
         1
+ EG
         1.2
                         XTI
        3.86E-09
                                   1.362328465
+ CJO
                        VJ
+ M
         0.48198551
                        FC
                                   0.5
+ TT
         1.00E-10
                         BV
                                    1500
+ IBV 1.00E-03
                          VPK
                                    1200
+ IAVE
         50
                          TYPE
                                    SiC Schottky
      GeneSiC Semiconductor
+ MFG
.ENDS
* End of GB50SLT12-CAL SPICE Model
```

Sep 2013