Electrical Datasheet*

GB05SHT12-CAL

Silicon Carbide Power Schottky Diode Chip

Features

- 1200 V Schottky rectifier
- 250 °C maximum operating temperature
- Temperature independent switching behavior
- Superior surge current capability
- \bullet Positive temperature coefficient of V_{F}
- Extremely fast switching speeds
- Superior figure of merit Q_C/I_F

Maximum Ratings at T_j = 250 °C, unless otherwise specified

Parameter	Symbol	Conditions	Values	Unit
Repetitive peak reverse voltage	V_{RRM}		1200	V
Continuous forward current	I _F	T _C ≤ 215 °C	5	Α
RMS forward current	I _{F(RMS)}	T _C ≤ 215 °C	8	Α
Operating and storage temperature	T_{j} , T_{stg}		-55 to 250	°C

Electrical Characteristics at T_j = 250 °C, unless otherwise specified

Dovemeter	Cumbal	Conditions -		Values		l lmi4	
Parameter	Symbol			min.	typ.	max.	Unit
Diode forward voltage	V _F	I _F = 5 A, T _j = 25 °C		2.1		V	
	VF	$I_F = 5 \text{ A}, T_j = 210 ^{\circ}\text{C}$			3.5	V	V
Reverse current	1	V _R = 1200 V, T _j	= 25 °C		0.9	10	
	I _R	$V_R = 1200 \text{ V}, T_j = 250 ^{\circ}\text{C}$		20.8	150	μΑ	
Total capacitive charge	Qc		V _R = 400 V		17		200
		$I_F \le I_{F,MAX}$ - $dI_F/dt = 200 A/\mu s$	$V_{R} = 960 \text{ V}$		29		nC
Switching time	t _s	$T_i = 210 ^{\circ}\text{C}$	V _R = 400 V		< 25		ns
		V _R = 960 V		\ 23		115	
Total capacitance	С	$V_R = 1 \text{ V, f} = 1 \text{ MHz, T}_j = 25 ^{\circ}\text{C}$		237			
		$V_R = 400 \text{ V}, f = 1 \text{ MHz}, T_j = 25 ^{\circ}\text{C}$		25		pF	
		$V_R = 1000 \text{ V, f} = 1 \text{ MHz, T}_j = 25 \text{ °C}$			20		
•		•	,				

Thermal Characteristics

Thermal redictation, junction case Table 1.00	Thermal resistance, junction - case	R_{thJC}	Assuming TO-276 package	1.38	°C/W
---	-------------------------------------	------------	-------------------------	------	------

^{*}For chip size and metallization, please refer to the mechanical datasheet (must have a non-disclosure agreement with GeneSiC Semiconductor).

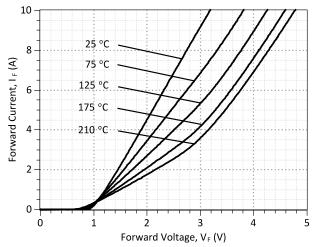


Figure 1: Typical Forward Characteristics

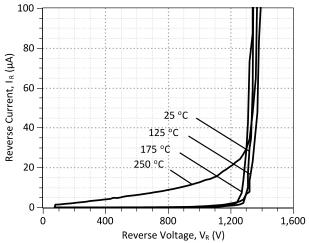


Figure 2: Typical Reverse Characteristics

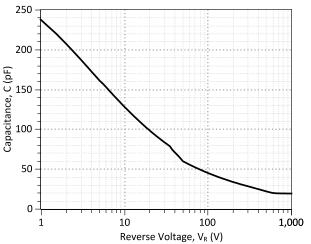


Figure 3: Typical Junction Capacitance vs Reverse Voltage Characteristics

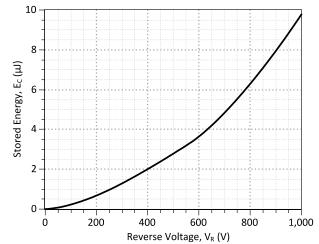


Figure 4: Typical Switching Energy vs Reverse Voltage Characteristics

Revision History					
Date	Revision	Comments	Supersedes		
2012/04/03	0	Initial release			

Published by GeneSiC Semiconductor, Inc. 43670 Trade Center Place Suite 155 Dulles, VA 20166

GeneSiC Semiconductor, Inc. reserves right to make changes to the product specifications and data in this document without notice.

GeneSiC disclaims all and any warranty and liability arising out of use or application of any product. No license, express or implied to any intellectual property rights is granted by this document.

Unless otherwise expressly indicated, GeneSiC products are not designed, tested or authorized for use in life-saving, medical, aircraft navigation, communication, air traffic control and weapons systems, nor in applications where their failure may result in death, personal injury and/or property damage.

SPICE Model Parameters

Copy the following code into a SPICE software program for simulation of the GB05SHT12-CAL device.

```
MODEL OF GeneSiC Semiconductor Inc.
    $Revision: 1.0
     $Date: 05-SEP-2013
                               $
    GeneSiC Semiconductor Inc.
     43670 Trade Center Place Ste. 155
    Dulles, VA 20166
    httphttp://www.genesicsemi.com/index.php/sic-products/schottky
    COPYRIGHT (C) 2013 GeneSiC Semiconductor Inc.
    ALL RIGHTS RESERVED
* These models are provided "AS IS, WHERE IS, AND WITH NO WARRANTY
* OF ANY KIND EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED
* TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE."
* Models accurate up to 2 times rated drain current.
* Start of GB05SHT12-CAL SPICE Model
.SUBCKT GB05SHT12 ANODE KATHODE
R1 ANODE INT R=((TEMP-24)*0.0021); Temperature Dependant Resistor
D1 INT KATHODE GB05SHT12 25C; Call the 25C Diode Model
D2 ANODE KATHODE GB05SHT12 PIN; Call the PiN Diode Model
.MODEL GB05SHT12 25C D
+ IS 4.45E-15
                                    0.206
                         RS
+ N
         1.18144
                         IKF
                                    112.92
+ EG
         1.2
                         XTI
+ CJO
                                    0.419
         3.00E-10
                        VJ
+ M
         1.6
                         FC
                                    0.5
+ TT
        1.00E-10
1.00E-03
                         BV
                                    1500
+ IBV
                                   1200
                         VPK
+ IAVE
                                    SiC Schottky
                          \mathtt{TYPE}
+ MFG GeneSiC Semiconductor
.MODEL GB05SHT12 PIN D
      2.93E-12
                                   0.35326
+ IS
                        RS
+ N
                                   0.0043236
         4.6113
                         IKF
+ EG
         3.23
                         XTI
                                   60
+ FC
         0.5
                         TT
+ BV
         1500
                         IBV
                                   1.00E-03
+ VPK
         1200
                         IAVE
+ TYPE SiC_PiN
.ENDS
* End of GB05SHT12-CAL SPICE Model
```

Sep 2013