BUK7E2R3-40C

N-channel TrenchMOS standard level FET

Rev. 03 — 26 January 2009

Product data sheet

1. Product profile

1.1 General description

Standard level gate drive N-channel enhancement mode Field-Effect Transistor (FET) in a plastic package using advanced TrenchMOS technology. This product has been designed and qualified to the appropriate AEC standard for use in high performance automotive applications.

1.2 Features and benefits

- AEC Q101 compliant
- Avalanche robust

- Suitable for standard level gate drive
- Suitable for thermally demanding environment up to 175°C rating

1.3 Applications

- 12V Motor, lamp and solenoid loads
- High performance automotive power systems
- High performance Pulse Width Modulation (PWM) applications

1.4 Quick reference data

Table 1. Quick reference

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V_{DS}	drain-source voltage	$T_j \ge 25 ^{\circ}C; T_j \le 175 ^{\circ}C$		-	-	40	V
I_D	drain current	$V_{GS} = 10 \text{ V}; T_{mb} = 25 \text{ C};$ see <u>Figure 1</u> ; see <u>Figure 3</u> ;	[1] [2]	-	-	100	Α
P _{tot}	total power dissipation	$T_{mb} = 25 \text{°C}$; see Figure 2		-	-	333	W
Static ch	aracteristics						
R _{DSon}	drain-source on-state resistance	$V_{GS} = 10 \text{ V}; I_D = 25 \text{ A};$ $T_j = 25 \text{ C}; \text{ see } \frac{\text{Figure } 12}{\text{Figure } 13};$		-	1.96	2.3	mΩ
Avalanch	ne ruggedness						
E _{DS(AL)S}	non-repetitive drain-source avalanche energy	$\begin{split} I_D &= 100 \text{ A; } V_{sup} \leq 40 \text{ V;} \\ R_{GS} &= 50 \Omega; V_{GS} = 10 \text{ V;} \\ T_{j(init)} &= 25 C; \text{ unclamped} \end{split}$		-	-	1.2	J

^[1] Refer to document 9397 750 12572 for further information.

^[2] Continuous current is limited by package.

2. Pinning information

Table 2. Pinning information

Pin	Symbol	Description	Simplified outline	Graphic symbol
1	G	gate	P 12.100	r
2	D	drain	mb	D
3	S	source		G (E)
mb	D	mounting base; connected to drain	1 2 3	mbb076 S
			SOT226 (TO-220AB;I2PAK)	

3. Ordering information

Table 3. Ordering information

Type number	Package		
	Name	Description	Version
BUK7E2R3-40C	TO-220AB; I2PAK	plastic single-ended package (I2PAK); low-profile 3-lead TO-220AB	SOT226

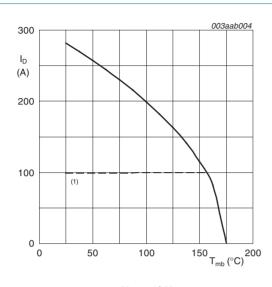
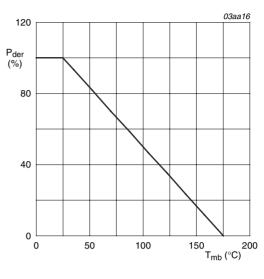

4. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).


Symbol	Parameter	Conditions		Min	Max	Unit
V_{DS}	drain-source voltage	$T_j \ge 25 \text{C}; T_j \le 175 \text{C}$		-	40	V
V_{DGR}	drain-gate voltage	$R_{GS} = 20 \text{ k}\Omega$		-	40	V
V_{GS}	gate-source voltage			-20	20	V
I _D	drain current	$T_{mb} = 25 \text{ C}$; $V_{GS} = 10 \text{ V}$; see <u>Figure 1</u> ; see <u>Figure 3</u> ;	[1][2]	-	100	Α
		$T_{mb} = 25 \text{ C}$; V _{GS} = 10 V; see <u>Figure 1</u> ; see <u>Figure 3</u> ;	[1][3]	-	276	Α
		$T_{mb} = 100 \text{C}$; $V_{GS} = 10 \text{V}$; see Figure 1;	[1][2]	-	100	Α
I _{DM}	peak drain current	T_{mb} = 25 °C; $t_p \le 10 \mu s$; pulsed; see Figure 3		-	1104	Α
P _{tot}	total power dissipation	$T_{mb} = 25 \text{°C}$; see Figure 2		-	333	W
T_{stg}	storage temperature			-55	175	${\mathbb C}$
Tj	junction temperature			-55	175	${\mathbb C}$
Source-dra	ain diode					
I _S	source current	$T_{mb} = 25 ^{\circ}\text{C};$	[1][3]	-	276	Α
		$T_{mb} = 25 ^{\circ}\text{C};$	[1][2]	-	100	Α
I _{SM}	peak source current	$t_p \le 10 \ \mu s$; pulsed; $T_{mb} = 25 \ ^{\circ}\!\! C$		-	1104	Α
Avalanche	ruggedness					
E _{DS(AL)S}	non-repetitive drain-source avalanche energy	I_D = 100 A; V_{sup} ≤ 40 V; R_{GS} = 50 Ω ; V_{GS} = 10 V; $T_{j(init)}$ = 25 C ; unclamped		-	1.2	J
E _{DS(AL)R}	repetitive drain-source avalanche energy	see Figure 4;	[4][5] [6][7]	-	-	J

- [1] Refer to document 9397 750 12572 for further information.
- [2] Continuous current is limited by package.
- [3] Current is limited by power dissipation chip rating.
- [4] Maximum value not quoted. Repetitive rating defined in avalanche rating figure.
- [5] Single-pulse avalanche rating limited by maximum junction temperature of 175 $^{\circ}$ C.
- [6] Repetitive avalanche rating limited by an average junction temperature of 170 °C.
- [7] Refer to application note AN10273 for further information.

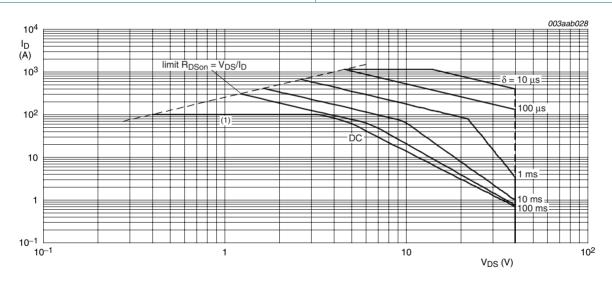

 $V_{GS} \geq 10\,V \label{eq:VGS}$ (1) Capped at 100 A due to package.

Fig 1. Continuous drain current as a function of mounting base temperature

$$P_{der} = \frac{P_{tot}}{P_{tot(25^{\circ}C)}} \times 100\%$$

Fig 2. Normalized total power dissipation as a function of mounting base temperature

 $T_{mb} = 25 \,^{\circ}C; I_{DM}$ is single pulse. (1) Capped at 100 A due to package.

Fig 3. Safe operating area; continuous and peak drain currents as a function of drain-source voltage

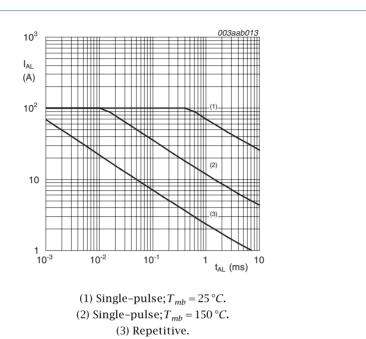


Fig 4. Single-pulse and repetitive avalanche rating; avalanche current as a function of avalanche time

6 of 14

Thermal characteristics

Thermal characteristics Table 5.

Product data sheet

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$R_{th(j-mb)}$	thermal resistance from junction to mounting base	see Figure 5	-	-	0.45	K/W
$R_{th(j-a)}$	thermal resistance from junction to ambient	vertical in free air	-	50	-	K/W

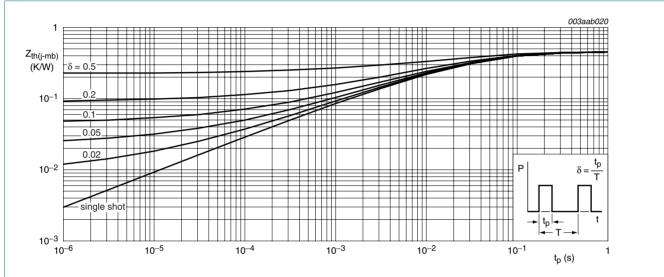


Fig 5. Transient thermal impedance from junction to mounting base as a function of pulse duration

6. Characteristics

Table 6. Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Static cha	aracteristics					
V _{(BR)DSS}	drain-source	$I_D = 250 \mu A; V_{GS} = 0 V; T_j = -55 ^{\circ}C$	36	-	-	V
	breakdown voltage	$I_D = 250 \ \mu A; \ V_{GS} = 0 \ V; \ T_j = 25 \ ^{\circ}\!$	40	-	-	V
$V_{GS(th)}$	gate-source threshold voltage	$I_D = 1$ mA; $V_{DS} = V_{GS}$; $T_j = 25$ °C; see Figure 10; see Figure 11	2	3	4	V
V_{GSth}	gate-source threshold voltage	$I_D = 1 \text{ mA}$; $V_{DS} = V_{GS}$; $T_j = 175 ^{\circ}\text{C}$; see Figure 10; see Figure 11	1	-	-	V
		$I_D = 1$ mA; $V_{DS} = V_{GS}$; $T_j = -55$ °C; see Figure 10; see Figure 11	-	-	4.4	V
DSS	drain leakage current	$V_{DS} = 40 \text{ V}; V_{GS} = 0 \text{ V}; T_j = 25 ^{\circ}\text{C}$	-	0.02	1	μΑ
GSS	gate leakage current	$V_{DS} = 0 \text{ V}; V_{GS} = 20 \text{ V}; T_j = 25 ^{\circ}\text{C}$	-	2	100	nA
		$V_{DS} = 0 \text{ V}; V_{GS} = -20 \text{ V}; T_j = 25 ^{\circ}\text{C}$	-	2	100	nA
R _{DSon}	drain-source on-state resistance	$V_{GS} = 10 \text{ V}; I_D = 25 \text{ A}; T_j = 175 \text{ C}; \text{ see}$ Figure 12; see Figure 13	-	-	4.26	mΩ
		$V_{GS} = 10 \text{ V}; I_D = 25 \text{ A}; T_j = 25 \text{ C}; \text{ see}$ Figure 12; see Figure 13	-	1.96	2.3	mΩ
loss	drain leakage current	$V_{DS} = 40 \text{ V}; V_{GS} = 0 \text{ V}; T_j = 175 ^{\circ}\text{C}$	-	-	500	μΑ
Dynamic	characteristics	·				
$Q_{G(tot)}$	total gate charge	$I_D = 25 \text{ A}$; $V_{DS} = 32 \text{ V}$; $V_{GS} = 10 \text{ V}$; see	-	175	-	nC
Q_{GS}	gate-source charge	Figure 15	-	49	-	nC
Q_{GD}	gate-drain charge		-	67	-	nC
$V_{GS(pl)}$	gate-source plateau voltage	$I_D = 25 \text{ A}; V_{DS} = 32 \text{ V}; \text{ see } \frac{\text{Figure 15}}{}$	-	5	-	V
C _{iss}	input capacitance	$V_{GS} = 0 \text{ V}; V_{DS} = 25 \text{ V}; f = 1 \text{ MHz};$	-	8492	11323	pF
Coss	output capacitance	$T_j = 25 \text{°C}$; see Figure 16	-	1606	1927	pF
C _{rss}	reverse transfer capacitance		-	1101	1508	pF
d(on)	turn-on delay time	$V_{DS} = 30 \text{ V}; R_L = 1.2 \Omega; V_{GS} = 10 \text{ V};$	-	65	-	ns
r	rise time	$R_{G(ext)} = 10 \Omega$	-	133	-	ns
d(off)	turn-off delay time		-	146	-	ns
if	fall time		-	119	-	ns
L _D	internal drain inductance	from drain lead 6 mm from package to centre of die	-	4.5	-	nΗ
		from upper edge of drain mounting base to centre of die	-	2.5	-	nΗ
-S	internal source inductance	from source lead to source bonding pad	-	7.5	-	nΗ
Source-d	rain diode					
V _{SD}	source-drain voltage	$I_S = 25 \text{ A}$; $V_{GS} = 0 \text{ V}$; $T_j = 25 \text{ C}$; see Figure 14	-	0.85	1.2	V
	reverse recovery time	$I_S = 20 \text{ A}$; $dI_S/dt = -100 \text{ A/}\mu\text{s}$; $V_{GS} = 0 \text{ V}$;	-	75	-	ns
rr	reverse recovery time	.5 =0.1, 0.5, 0.1 .00.1, 0.0, 1.0, 0.1,				

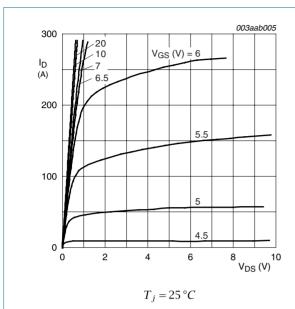


Fig 6. Output characteristics: drain current as a function of drain-source voltage; typical values

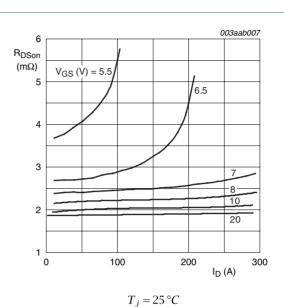


Fig 7. Drain-source on-state resistance as a function of drain current; typical values

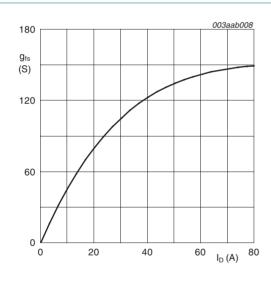


Fig 8. Forward transconductance as a function of drain current; typical values

 $T_i = 25 \,^{\circ}C; V_{DS} = 25 \,^{\circ}V$

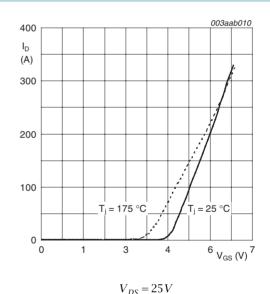
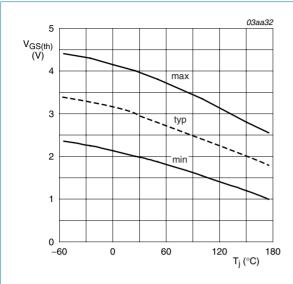
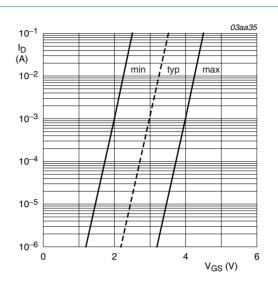




Fig 9. Transfer characteristics: drain current as a function of gate-source voltage; typical values

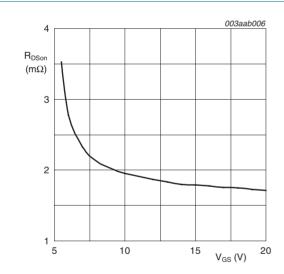

 $I_D = 1 \, mA; V_{DS} = V_{GS}$

Fig 10. Gate-source threshold voltage as a function of junction temperature

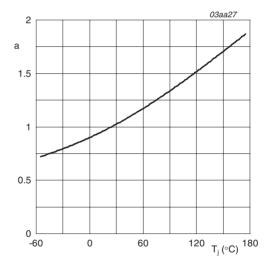

$$T_j = 25$$
 ° C ; $V_{DS} = 5V$

Fig 11. Sub-threshold drain current as a function of gate-source voltage

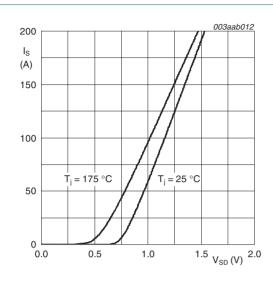

 $T_j = 25 \, ^{\circ}C; I_D = 25 \, A$

Fig 12. Drain-source on-state resistance as a function of gate-source voltage; typical values

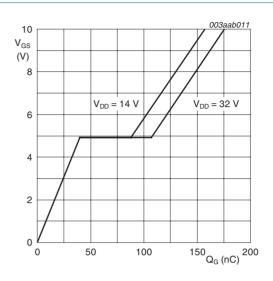

 $a = \frac{R_{DSon}}{R_{DSon(2.5^{\circ}C)}}$

Fig 13. Normalized drain-source on-state resistance factor as a function of junction temperature

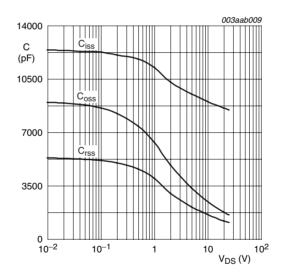

 $V_{GS} = 0 V$

Fig 14. Source current as a function of source-drain voltage; typical values

$$T_j = 25 \,^{\circ}C; I_D = 25A$$

Fig 15. Gate-source voltage as a function of gate charge; typical values

 $V_{GS} = 0V; f = 1MHz$

Fig 16. Input, output and reverse transfer capacitances as a function of drain-source voltage; typical values

7. Package outline

Plastic single-ended package (I2PAK); low-profile 3-lead TO-220AB

SOT226

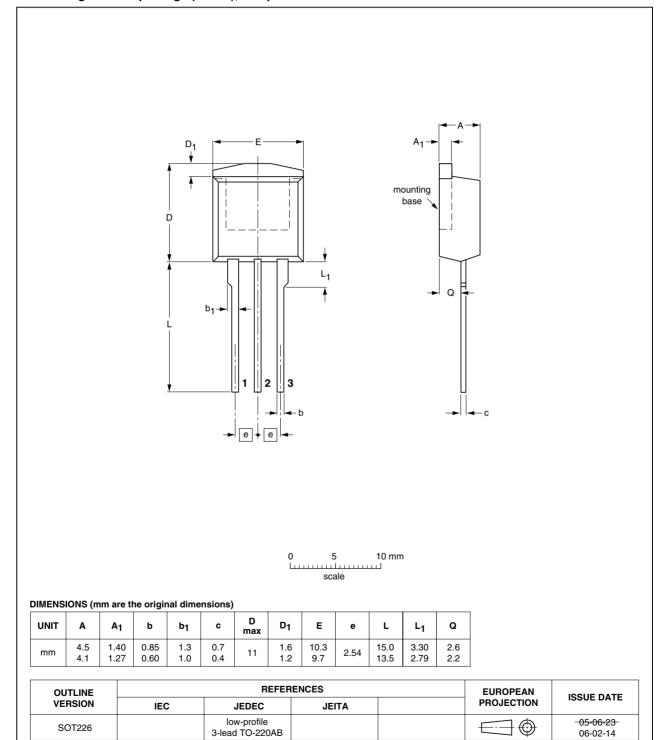


Fig 17. Package outline SOT226 (I2PAK)

12 of 14

N-channel TrenchMOS standard level FET

Revision history

Table 7. **Revision history**

Product data sheet

Document ID	Release date	Data sheet status	Change notice	Supersedes
BUK7E2R3-40C_3	20090126	Product data sheet	-	BUK75_7E2R3-40C_2
Modifications:		of this data sheet has bee of NXP Semiconductors.	n redesigned to comply w	ith the new identity
	 Legal texts 	have been adapted to the	new company name whe	re appropriate.
	 Type number 	er BUK7E2R3-40C separa	ted from data sheet BUK	75_7E2R3-40C_2.
BUK75_7E2R3-40C_2	20060810	Product data sheet	-	BUK75_7E2R3-40C_1
BUK75 7E2R3-40C 1	20060503	Product data sheet	-	-

9. Legal information

9.1 Data sheet status

Document status [1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

9.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

9.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

9.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

TrenchMOS — is a trademark of NXP B.V.

10. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

11. Contents

1	Product profile
1.1	General description
1.2	Features and benefits1
1.3	Applications
1.4	Quick reference data1
2	Pinning information2
3	Ordering information2
4	Limiting values3
5	Thermal characteristics6
6	Characteristics7
7	Package outline
8	Revision history12
9	Legal information13
9.1	Data sheet status
9.2	Definitions13
9.3	Disclaimers
9.4	Trademarks13
10	Contact information 13

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

