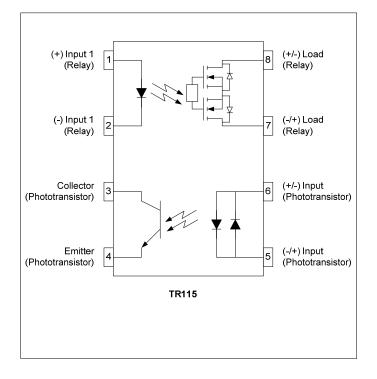
400V / 20 Ω Multifunction Telecommunications Switch

1 Form A / Optocoupler

Description


The TR115 is a dual function circuit designed specifically as a telecommunications switch. It consists of an optically isolated solid state relay and an optically isolated optocoupler combined in a compact 8pin DIP package. The relay portion is normally open, and composed of an LED on the input, optically coupled to a sensing circuit which drives two source-to-source DMOS transistors. The optocoupler portion of the device consists of two back-toback LEDs that drive an output phototransistor

The TR115 comes standard in a miniature 8 pin DIP package making it ideal for high-density board applications.

Applications

- Telecom Switching
- Fax / Modem Modules
- Set-top Boxes
- **DAA Arrangements**
- Hookswitch
- **Loop Current Detection**
- **Pulse Dialing**

Schematic Diagram

Features

- Function Integration (SSR + Optocoupler) in compact package
- 20Ω MAX On Resistance (Relay Portion)
- 120mA MAX Continuous Load Current (Relay Portion)
- Low Input Control Current (2.5mA TYP, Relay Portion)
- High Input-Output Isolation
- Long Life / High Reliability
- RoHS / Pb-Free / REACH Compliant

Agency Approvals

UL/C-UL: File # E201932

VDE: File # 40035191 (EN 60747-5-2)

Absolute Maximum Ratings

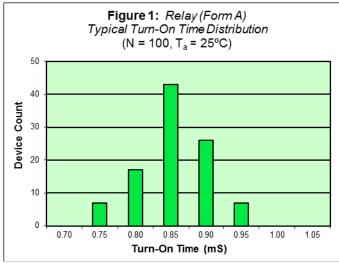
The values indicated are absolute stress ratings. Functional operation of the device is not implied at these or any conditions in excess of those defined in electrical characteristics section of this document. Exposure to absolute Maximum Ratings may cause permanent damage to the device and may adversely affect reliability.

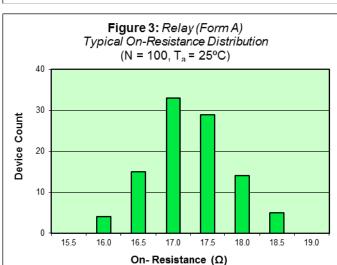
Storage Temperature	55 to +125°C
Operating Temperature	40 to +85°C
Continuous Input Current	40mA
Transient Input Current	400mA
Reverse Input Control Voltage	6V
Input Power Dissipation	40mW
Output Power Dissipation	800mW
Solder Temperature – Wave (10sec)	260°C
Solder Temperature – IR Reflow (10sec)	260°C

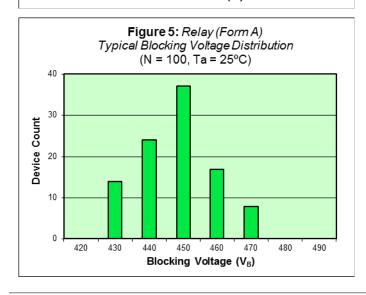
Ordering Information

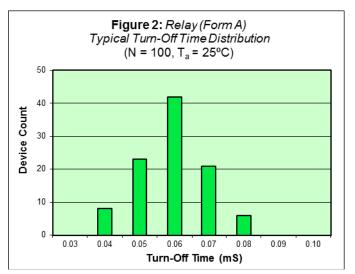
Part Number	Description
TR115 TR115-H TR115-S TR115-HS TR115-STR TR115-HSTR	8 pin DIP, (50/Tube) 3.75kV $_{\rm RMS}$ Viso, 8 pin DIP, (50/Tube) 8 pin SMD, (50/Tube) 3.75kV $_{\rm RMS}$, 8 pin SMD, (50/Tube) 8 pin SMD, Tape and Reel (1000/Reel) 3.75kV $_{\rm RMS}$, 8 pin SMD, Tape and Reel (1000/Reel)

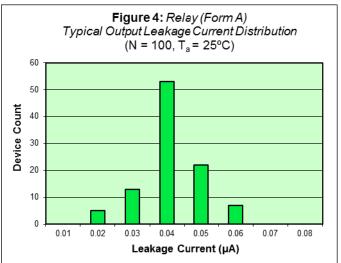
NOTE: Suffixes listed above are not included in marking on device for part number identification

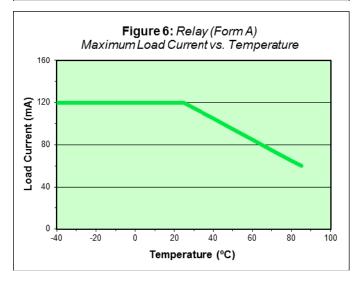



Electrical Characteristics, T_A = 25°C (unless otherwise specified)


Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Relay Input Specifications						
LED Forward Voltage	V _F	-	1.2	1.5	V	I _F = 10mA
LED Reverse Voltage	BV_R	6	-	-	V	I _R = 10μA
Turn-On Current	I _F	-	2.5	5	mA	I _O = 120mA
Turn-Off Current	I _{FOFF}	-	0.5	-	mA	I _O = 120mA
Relay Output Specifications		,			,	
Blocking Voltage	V _B	400	-	-	V	Ι ₀ =1μΑ
Continuous Load Current	Io	-	-	120	mA	I _F =5mA
On Resistance	R _{on}	-	17	20	Ω	I _F =5mA, I _O =120mA
Leakage Current	I _{Oleak}	-	0.2	1	μА	I _F =0mA, V _O =400V
Output Capacitance	C _{OUT}	-	10	-	pF	V _O =25V, f=1.0MHz
Offset Voltage	V _{OFFSET}	-	-	0.2	mV	I _F =5mA
Turn-On Time	T _{ON}	-	1	5	mS	I _F =5mA, I _O =120mA
Turn-Off Time	T _{OFF}	-	0.5	1	mS	I _F =0mA, I _O =120mA
Phototransistor Input Specifications						
LED Forward Voltage	V _F	-	1.2	1.4	V	I _F = ±20mA
Terminal Capacitance	Ct	-	30	250	pF	V=0, f=1KHz
Reverse Current	I _R	-	-	10	μА	V _R =4V
Phototransistor Output Specifications						
Collector-Emitter Voltage	V _{CEO}	60	-	-	V	I _C =100μA
Emitter-Collector Voltage	V _{COE}	6	-	-	V	I _E =10μA
Collector Dark Current	I _{CEO}	-	-	500	nA	V _{CE} =20V, I _F =0mA
Floating Capacitance	C _f	-	0.6	1.0	pF	V=0, f=1MHz
Cut-Off Frequency	f _C	-	80	-	kHz	V_{CE} =5V, I_{C} =±2mA, R_{L} =100 Ω , -3dB
Saturation Voltage	V _{CE(sat)}	-	0.1	0.5	٧	I _F =±5mA, I _C =10mA
Current Transfer Ratio	CTR	30	-	800	%	I _F =±2mA, V _{CE} =5V
Coupled Specifications						
Coupled Capacitance	C _{COUPLED}	-	3	-	pF	
Contact Transient Ratio	-	2,000	7,000	0	V/μS	dV = 50V
Isolation Specifications						
Isolation Voltage	V _{ISO}	2,500	-	-	V _{RMS}	RH ≤ 50%, t=1min
-H Option	V _{ISO}	3,750	-	-	V _{RMS}	RH ≤ 50%, t=1min
Input-Output Resistance	R _{I-O}	_	10 ¹²	-	Ω	V _{I-O} = 500V _{DC}




TR115 Performance & Characteristics Plots, T_A = 25°C (unless otherwise specified)



TR115 Solder Temperature Profile Recommendations

(1) Infrared Reflow:

Refer to the following figure as an example of an optimal temperature profile for single occurrence infrared reflow. Soldering process should not exceed temperature or time limits expressed herein. Surface temperature of device package should not exceed 250°C:

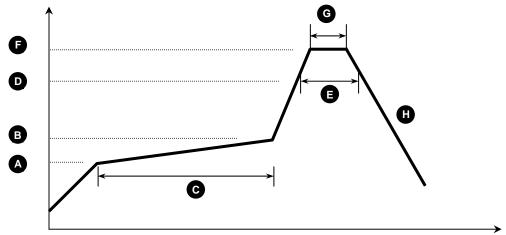


Figure 1

Process Step	Description	Parameter		
Α	Preheat Start Temperature (°C)	150°C		
В	Preheat Finish Temperature (°C)	180°C		
С	Preheat Time (s)	90 - 120s		
D	Melting Temperature (°C)	230°C		
E	Time above Melting Temperature (s)	30s		
F	Peak Temperature, at Terminal (°C)	260°C		
G	Dwell Time at Peak Temperature (s)	10s		
Н	Cool-down (°C/s)	<6°C/s		

(2) Wave Solder:

Maximum Temperature: 260°C (at terminal)

Maximum Time: 10s

Pre-heating: 100 - 150°C (30 - 90s)

Single Occurrence

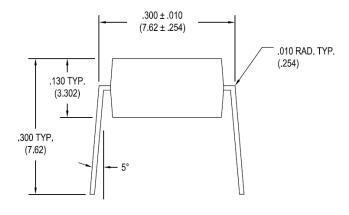
(3) Hand Solder:

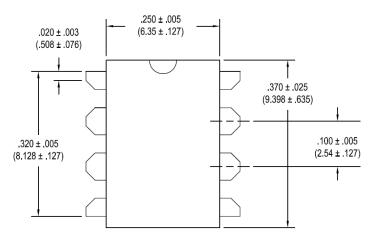
Maximum Temperature: 350°C (at tip of soldering iron)

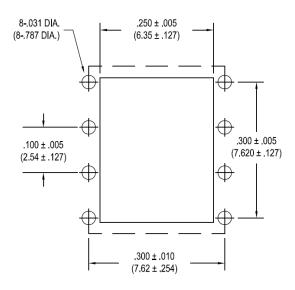
Maximum Time:

Single Occurrence

350°C (at tip of soldering iron

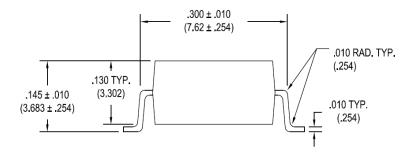


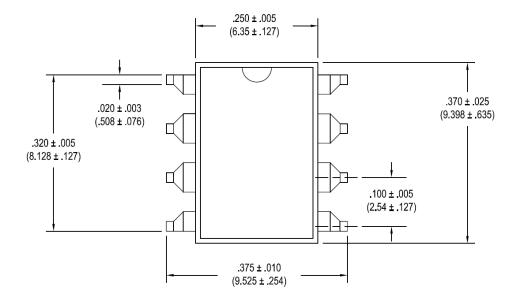

TR115 Package Dimensions

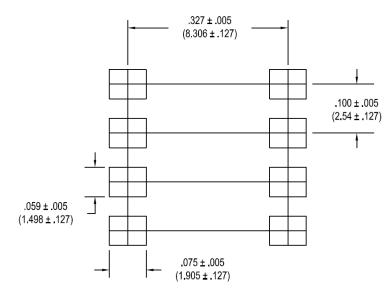

8 PIN DIP Package

Note: All dimensions in inches ["] with millimeters in parenthesis ()

Device Weight: 0.45g

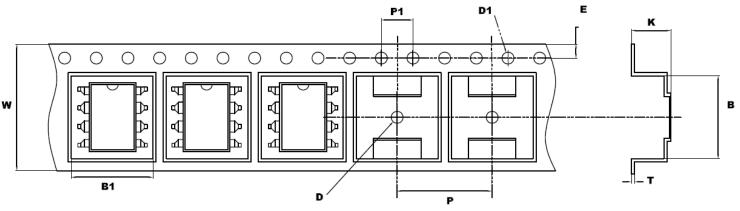



TR115 Package Dimensions


8 PIN SMD Surface Mount Package (-S)

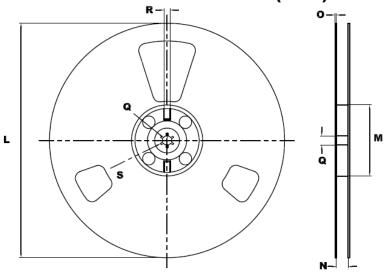
Note: All dimensions in inches ["] with millimeters in parenthesis ()

Device Weight: 0.45g


Note: All dimensions in millimeters

TR115 Package Dimensions

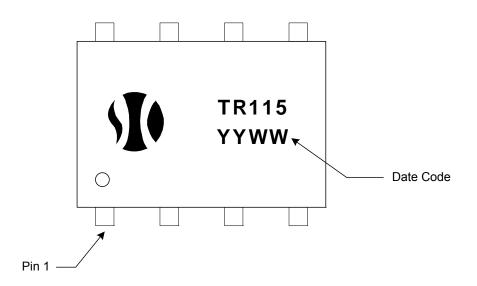
8 PIN SMD Tape & Reel (-STR)


Outline and Dimension (Tape)

Direction of Feed -

ı	W	В	B1	P	P1	K	ш	Т	D	D1
ı	16.00 ±0.1	10.50 ±0.1	10.30 ±0.1	12.00 ±0.1	4.00 ±0.1	5.00 ± 0.1	1.75 ±0.1	0.40 ±0.1	1.50 ±0.1	1.50 ±0.1

Outline and Dimensions (Reel)



Packaging: 1,000 pcs / reel

	L	M	N	0	O Q		S	
Γ	330.00	100.00	16.40 +0.2	2.00 ±0.1	13.00 ±0.2	2.00	10.00	

TR115 Package Marking

DISCLAIMER

Solid State Optronics (SSO) makes no warranties or representations with regards to the completeness and accuracy of this document. SSO reserves the right to make changes to product description, specifications at any time without further notices.

SSO shall not assume any liability arising out of the application or use of any product or circuit described herein. Neither circuit patent licenses nor indemnity are expressed or implied.

Except as specified in SSO's Standard Terms & Conditions, SSO disclaims liability for consequential or other damage, and we make no other warranty, expressed or implied, including merchantability and fitness for particular use.

LIFE SUPPORT POLICY

SSO does not authorize use of its devices in life support applications wherein failure or malfunction of a device may lead to personal injury or death. Users of SSO devices in life support applications assume all risks of such use and agree to indemnify SSO against any and all damages resulting from such use. Life support devices are defined as devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when used properly in accordance with instructions for use can be reasonably expected to result in significant injury to the user, or (d) a critical component of a life support device or system whose failure can be reasonably expected to cause failure of the life support device or system, or to affect its safety or effectiveness.