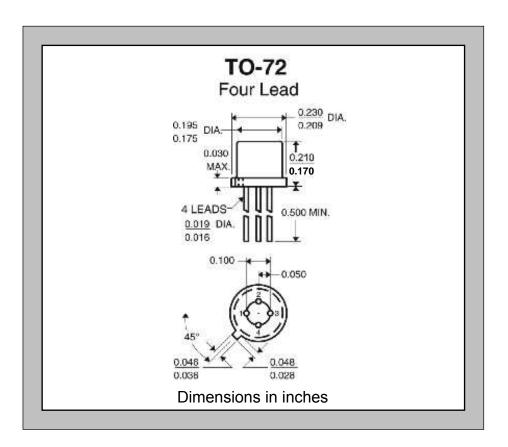


Twenty-Five Years Of Quality Through Innovation

LS627


PHOTO FET LIGHT SENSITIVE JFET

FEATURES					
DIRECT REPLACEMENT FOR CRYSTALONICS FF627					
FLAT GLASS TOP FOR EXTERNAL OPTICS					
ULTRA HIGH SENSITIVITY					
ABSOLUTE MAXIMUM RATINGS ¹ @ 25 °C (unless otherwise stated)					
Maximum Temperatures					
Storage Temperature	-65 to +200 °C				
Operating Junction Temperature	-55 to +165 °C				
Maximum Power Dissipation					
Continuous Power Dissipation, T _A =25°C	400mW				
Maximum Currents					
Drain to Source	50mA				
Maximum Voltages					
Drain to Gate	15V				
Drain to Source	15V				
Gate to Source	-10V				

ELECTRICAL CHARACTERISTICS @ 25 ℃ (unless otherwise stated)

SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
$V_{GS(off)}$	Gate to Source cutoff Voltage (V _{PO})	1.0		5.0	V	$V_{DS} = 10V, I_D = 0.1 \mu A$
S _G	Gate Sensitivity ^{2, 7}	6.4		24	μA/mW/cm ²	$V_{DS} = 10V, V_{GS} = 0V, \lambda = 0.9 \mu m$
S _D	Drain Sensitivity ^{3, 7}		500		mA/mW/cm ²	V_{DS} = 10V, V_{GS} = 0V, R_G = 1M Ω
λ_{lg}	Gate Current (Light) ^{4, 7}	10		37.5	nA/FC	V_{DS} = 10V, V_{GS} = 0V
λ_{Id}	Drain Current (Light) ^{4, 7}		800		μA/FC	V_{DS} = 10V, V_{GS} = 0V, R_G = 1M Ω
I _{DSS}	Drain Saturation Current	8.0			mA	$V_{DS} = 10V$, $V_{GS} = 0V$
I _{GSS}	Gate Leakage Current (Dark)			30	pA	$V_{GS} = -10V, V_{DS} = 0V$
9fs	Forward Transconductance (g _m)	8000			μS	$V_{DS} = 10V, V_{GS} = 0V, f = 1kHz$
R _{DS(on)}	Drain to Source On Resistance		100		Ω	$V_{DS} = 0.1V, V_{GS} = 0V$
C_GS	Gate to Source Capacitance ⁷			35	pF	$V_{GS} = -10V, f = 140kHz$
C_GD	Gate to Drain Capacitance ⁷			20		$V_{GD} = -10V, f = 140kHz$
t _r	Rise Time ^{5, 7}		30		ns	$V_{DS} = 10V, R_L = R_G = 100\Omega$
t _f	Fall Time ^{6, 7}		50			

NOTES

- 1. Absolute maximum ratings are limiting values above which serviceability may be impaired.
- 2. Gate Current per unit Radient Power Density at Lens Surface
- 3. Drain Current per unit Radient Power Density (λ = 0.9 μ m).
- 4. Tungsten Lamp 2800°K Color Temperature.
- 5. GaAs Diode Source.
- 6. Directly Proportional to R_G.
- 7. Not production tested. Guaranteed by design.

Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.

Linear Integrated Systems (LIS) is a 25-year-old, third-generation precision semiconductor company providing high-quality discrete components. Expertise brought to LIS is based on processes and products developed at Amelco, Union Carbide, Intersil and Micro Power Systems by company President John H. Hall. Hall, a protégé of Silicon Valley legend Dr. Jean Hoerni, was the director of IC Development at Union Carbide, co-founder and vice president of R&D at Intersil, and founder/president of Micro Power Systems.