

Twenty-Five Years Of Quality Through Innovation

FEATURES							
LOW POWER I _{DSS} <600 μA (2N4117)							
MINIMUM CIRCUIT LOADING I _{GSS} <1 pA (2N4117 A Series)							
ABSOLUTE MAXIMUM RATINGS (NOTE 1)							
@ 25°C (unless otherwise noted)							
Gate-Source or Gate-Drain Voltage (NOTE 1)	-40V						
Gate-Current	50mA						
Total Device Dissipation							
(Derate 2mW/ºC above 25°C)	300mW						
Storage Temperature Range	-55°C to+150°C						
Lead Temperature							
(1/16" from case for 10 seconds)	300ºC						

2N and SST 4117, 4118, 4119

ULTRA-HIGH INPUT IMPEDANCE N-CHANNEL JFET

ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

			2N&SST 4117A		2N4118		2N4119				
			2N4117/A		2N&SST 4118A		2N&SST 4119A				
SYMBOL	CHARACTER	ISTIC	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	CONDITIONS	
I _{GSS}	Gate Reverse Current Standard only		1	-10		-10		-10	pA nA	V _{GS} =-10V V _{DS} =0	
IGSS			1	-25		-25		-25			150ºC
L	Gate Reverse Curre	ate Reverse Current		-1		-1		-1	pA nA	V_{GS} =-20V V_{DS} =0	
I_{GSS}	2N Series only			-2.5		-2.5		-2.5			150ºC
BV_GSS	Gate-Source Breako Voltage	down	-40		-40		-40		V $I_{G} = -1 \mu A$ $V_{DS} = 0$		
V _{GS(off)}	Gate-Source Cutoff Voltage		-0.6	-1.8	-1	-3	-2	-6		V _{DS} =10V I _D =1nA	١
-	Saturation Drain Current		0.03	0.60	0.08	0.60	0.20	0.80	mA	$V_{DS} = 10V V_{GS} = 0$	
I _{DSS}	(<u>NOTE 2</u>)	FN4117/A	0.015								
g fs	Common-Source Fo Transconductance	rward (NOTE 2)	70	450	80	650	100	700			£ 41.11_
gos	Common-Source Ou Conductance	utput	1	3		5		10	μS	V 10V V 0	f=1kHz
C _{iss}	Common-Source Inp Capacitance	out	-1	3		3		3	V _{DS} =10V V _{GS} =0 f=		f=1MHz
C _{rss}	Common-Source Re Transfer Capacitano			1.5		1.5		1.5	ρı		1— 1 IVII 12

NOTES:

- 1. Due to symmetrical geometry, these units may be operated with source and drain leads interchanged.
- 2. This parameter is measured during a 2 ms interval 100 ms after power is applied. (Not a JEDEC condition.)

Linear Integrated Systems (LIS) is a 25-year-old, third-generation precision semiconductor company providing high-quality discrete components. Expertise brought to LIS is based on processes and products developed at Amelco, Union Carbide, Intersil and Micro Power Systems by company President John H. Hall. Hall, a protégé of Silicon Valley legend Dr. Jean Hoerni, was the director of IC Development at Union Carbide, co-founder and vice president of R&D at Intersil, and founder/president of Micro Power Systems.