

300mA Low Drop-out Positive Voltage Regulators

Features

- Stable with 2.2µF Ceramic Capacitor
- Voltage Reference Accuracy of 2%
- Only 270mV Dropout at 300mA and 170mV Dropout at 150mA
- Quiescent Current in Shutdown of 5µA
- Current Limit and Thermal Shutdown
- Logic Input Enable Pin
- RoHS-compliant, halogen-free SOT-23-5 or SOT-23-5R with alternate pin-out

Applications

- Laptop, Notebook and Palmtop computers
- Battery Powered Equipment
- PCMCIA Vcc & Vpp Regulators
- Consumer Electronics
- High Efficiency Linear Power Supplies

Description

The APU1205 device is an efficient linear voltage regulator with better than 2% initial voltage accuracy, very low dropout voltage and very low ground current designed especially for hand-held, battery powered applications. Other features of the device are: TTL compatible enable/shutdown control input, current limiting and thermal shutdown.

The APU1205 is available in fixed and adjustable output voltage versions in a small SOT-23 5-pin package.

Typical Applications

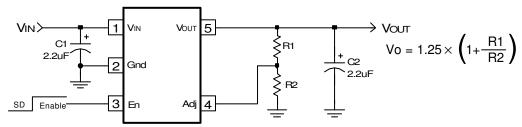
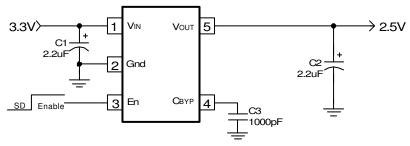
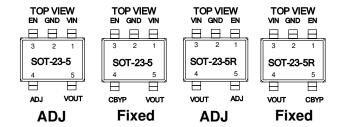


Figure 1 - Typical application of the APU1205 adjustable voltage regulator.




Figure 2 - Typical application of the APU1205-25 fixed voltage regulator.

Ordering Information

T _J (°C)	Part No	Output Voltage	
0 to 125	APU1205Y5-HF-3TR	APU1205Y5R-HF-3TR	Adjustable
0 to 125	APU1205Y5-18-HF-3TR	APU1205Y5R-18-HF-3TR	1.8V
0 to 125	APU1205Y5-25-HF-3TR	APU1205Y5R-25-HF-3TR	2.5V
0 to 125	APU1205Y5-33-HF-3TR	APU1205Y5R-33-HF-3TR	3.3V

Parts are shipped on tape and reel, 3000pcs/reel

Pin Configuration

Pin Descriptions

PIN SYMBOL	PIN DESCRIPTION
Vin	The input pin of the regulator. Typically a large storage capacitor is connected from this pin to ground to ensure that the input voltage does not sag below the minimum dropout voltage during the load transient response. This pin must always be higher than Vout by at least the amount of the dropout voltage plus some margin in order for the device to regulate properly.
Gnd	Ground pin. This pin must be connected to the lowest potential in the system and all other pins must be at higher potential with respect to this pin.
En	Enable pin. A low signal or left open on this pin shuts down the output. This pin must be tied HI or to V_N for normal operation.
Adj (Adjustable Only)	A resistor divider from this pin to the V_{OUT} pin and ground sets the output voltage. To minimize the error due to the error amplifier, select the values of the resistor dividers to be less than $10 \text{k}\Omega$.
C _{BYP} (Fixed Only)	A 470 to 1000pF bypass capacitor connected to this pin reduces the output noise.
Vout	The output of the regulator. A capacitor of at least $2.2\mu F$ with max ESR of 1Ω must be connected from this pin to ground to ensure stability.

5-PIN	Output		
SOT-23	Voltage		
APU1205Y5-3	1.25V		
APU1205Y5-18-3	1.8V		
APU1205Y5-25-3	2.5V		
APU1205Y5-33-3	3.3V		

Table 1- Nominal output voltage vs. part number.

The output voltage of the adjustable device can be set using:

Vout =
$$1.25 \times \left(1 + \frac{R1}{R2}\right)$$

Where:

R1 = Resistor connected from the Vout pin to the Adj pin

R2 = Resistor connected from the Adj pin to ground.

THIS PRODUCT IS SENSITIVE TO ELECTROSTATIC DISCHARGE, PLEASE HANDLE WITH CAUTION.

USE OF THIS PRODUCT AS A CRITICAL COMPONENT IN LIFE SUPPORT OR OTHER SIMILAR SYSTEMS IS NOT AUTHORIZED.

APEC DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

APEC RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN.

Absolute Maximum Ratings

Electrical Specifications

Unless otherwise specified, these specifications apply over $C_{N=Co=2.2\mu F}$, $I_{O=100\mu A}$, $V_{IN(MIN)=2.5V}$ (adjustable devices), $V_{N=Vo+1V}$ (for fixed voltage devices), $V_{OUT=V_{FB}}$ (for adjustable version only), $C_{BYP=470pF}$ (for fixed voltage devices), $V_{ENB=2V}$ and $I_{A=25°C}$. Typical values refer to $I_{A=25°C}$. Low duty cycle pulse testing is used which keeps junction and case temperatures equal to the ambient temperature.

PARAMETER	SYM	TEST CONDITION	MIN	TYP	MAX	UNITS
Reference Voltage	\/-				0	%
(See Table 1 for typical values)	Vo		-2		2	70
Line Regulation	ΔV_1	Vo + 1V <v n<10v<="" td=""><td></td><td>0.005</td><td></td><td>%/V</td></v>		0.005		%/V
Load Regulation (Note 1)	ΔV_{L}	1mA <lo<100ma< td=""><td></td><td>0.8</td><td></td><td>%</td></lo<100ma<>		0.8		%
		100mA <lo<300ma< td=""><td></td><td>0.1</td><td></td><td></td></lo<300ma<>		0.1		
Dropout Voltage (Note 2)	ΔV (O)	lo=100μA		10	50	mV
		Io=50mA		85	110	
		lo=150mA		170	220	
		Io=300mA		270	350	
Ground Current (Note 3)	lα	V _{EN} =2V, Io=100μA		120	160	μΑ
		Io=50mA		420	600	
		lo=150mA		2200	2900	
		lo=300mA		7200	9500	
Ground Current-SD Activated	I Q(SD)	V _{EN} =0V to 0.8V or Open		5		μΑ
Current Limit	Icl	Vo=0V	320	420		mA_
Thermal Regulation	ΔV_P	V _N =10V, Io=150mA, 10ms Pulse		0.05		%/W
Adjust Pin Current	ladj	V N=2.5V, Vo=VADJ		0.1		μΑ
Enable Pin Input LO Voltage	V _{EN(L)}	Regulator OFF			0.8	V
Enable Pin Input HI Voltage	V _{EN(H)}	Regulator ON	2			V
Enable Pin Input LO Current		$V_{EN(L)}=0V$ to 0.8V		0.01		μΑ
Enable Pin Input HI Current		V _{EN(H)} =2V to V _N		20		μΑ

Note 1: Low duty cycle pulse testing with Kelvin connections is required in order to maintain accurate data.

Note 2: Dropout voltage is defined as the minimum differential voltage between V_{IN} and V_{OUT} required to maintain regulation at V_{OUT} . It is measured when the output voltage drops 1% below its nominal value.

Note 3: Ground current is the regulator quiescent current plus the pass transistor current. The total current from the supply is the sum of the load current plus the ground pin current.

Block Diagrams

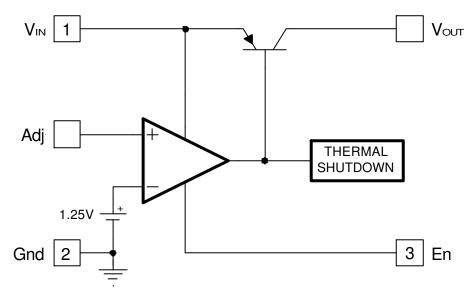


Figure 3 - APU1205 adjustable-output block diagram.

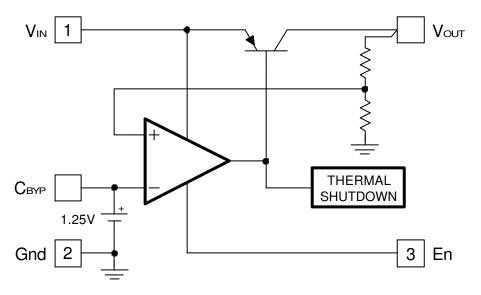
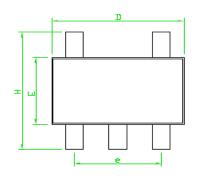
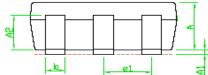
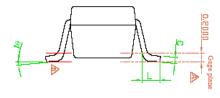
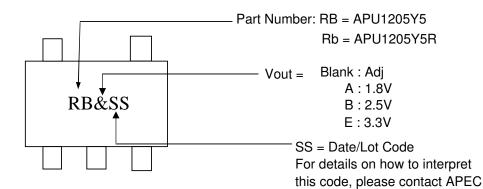





Figure 4 - APU1205-18, APU1205-25, and APU1205-33 fixed-output block diagram.

Package Dimensions: SOT-23-5

SYMBOLS	Millimeters			
	MIN	NOM	MAX	
A	1.00	1.10	1.30	
A1	0.00		0.10	
A2	0.70	0.80	0.90	
b	0.30	0.40	0.50	
C	0.10	0.15	0.25	
D	2.70	2.90	3.10	
Е	1.40	1.60	1.80	
e		1.90(TYP)		
Н	2.60	2.80	3.00	
L	0.37			
θ1	0°	5° 9°		
e1		0.95(TYP)		


Note 1: Package dimensions exclude mold flash protrusions or gate burrs.

Note 2: Tolerance ± 0.1000 mm (4mil) unless otherwise specified.

Note 3: Coplanarity: 0.1000 mm

Note 4: Dimension L is measured in gage plane.

Part Marking

