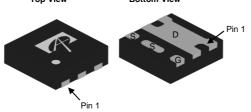


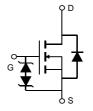
AON1634

30V N-Channel MOSFET

General Description

The AON1634 combines advanced trench MOSFET technology with a low resistance package to provide extremely low $R_{\text{DS(ON)}}.$ This device is ideal for load switch and battery protection applications.


Product Summary


 $\begin{array}{lll} V_{DS} & 30V \\ I_{D} & (at \, V_{GS} \! = \! 10V) & 4A \\ R_{DS(ON)} & (at \, V_{GS} = \! 10V) & < 54m\Omega \\ R_{DS(ON)} & (at \, V_{GS} = \! 4.5V) & < 62m\Omega \\ R_{DS(ON)} & (at \, V_{GS} = \! 2.5V) & < 82m\Omega \end{array}$

Typical ESD protection HBM Class 3A

Absolute Maximum Ratings T_A=25℃ unless otherwise noted Parameter Symbol Maximum Units Drain-Source Voltage 30 V_{DS} ٧ Gate-Source Voltage ±12 V_{GS} Continuous Drain T_A=25℃ 4 I_D Current G T_A=70℃ 3 Α Pulsed Drain Current C 16 I_{DM} T_A=25℃ 1.8 P_D W T_A=70℃ Power Dissipation A 1.15 Junction and Storage Temperature Range T_J , T_{STG} -55 to 150 ${\mathfrak C}$

Thermal Characteristics									
Parameter		Symbol	Тур	Max	Units				
Maximum Junction-to-Ambient A	t ≤ 10s	D	56	70	°C/W				
Maximum Junction-to-Ambient AD	Steady-State	$\kappa_{\theta JA}$	88	110	°C/W				

Electrical Characteristics (T_J=25℃ unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units	
STATIC	PARAMETERS							
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =250μA, V _{GS} =0V		30			V	
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =30V, V _{GS} =0V				1	μА	
		T	J=55℃			5		
I _{GSS}	Gate-Body leakage current	V _{DS} =0V, V _{GS} =±10V				±10	μΑ	
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$		0.7	1.05	1.5	V	
I _{D(ON)}	On state drain current	V_{GS} =10V, V_{DS} =5V		16			Α	
R _{DS(ON)} S	Static Drain-Source On-Resistance	V_{GS} =10V, I_D =4A			43.5	54	mΩ	
		T _J =	=125℃		68	84	11122	
	Static Drain-Source On-Ivesistance	V_{GS} =4.5V, I_D =3A			48	62	mΩ	
		V_{GS} =2.5V, I_D =2A			62	82	mΩ	
g _{FS}	Forward Transconductance	V_{DS} =5V, I_D =4A			15		S	
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V			0.75	1	V	
I _S	Maximum Body-Diode Continuous Current					2.5	Α	
DYNAMI	C PARAMETERS							
C _{iss}	Input Capacitance	V _{GS} =0V, V _{DS} =15V, f=1MHz			245		pF	
Coss	Output Capacitance				35		pF	
C_{rss}	Reverse Transfer Capacitance				20		pF	
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz			5.3		Ω	
SWITCH	ING PARAMETERS							
Q _g (10V)	Total Gate Charge	V _{GS} =10V, V _{DS} =15V, I _D =4A			5.7	10	nC	
Q _g (4.5V)	Total Gate Charge				2.6	5	nC	
Q_{gs}	Gate Source Charge				0.5		nC	
Q_{gd}	Gate Drain Charge				1		nC	
t _{D(on)}	Turn-On DelayTime	V_{GS} =10V, V_{DS} =15V, R_L =3.75 Ω , R_{GEN} =3 Ω			2		ns	
t _r	Turn-On Rise Time				3.5		ns	
t _{D(off)}	Turn-Off DelayTime				22		ns	
t _f	Turn-Off Fall Time				3.5		ns	
t _{rr}	Body Diode Reverse Recovery Time	I _F =4A, dI/dt=500A/μs			6.5		ns	
Q_{rr}	Body Diode Reverse Recovery Charge	_E I _F =4A, dI/dt=500A/μs			7.5		nC	

A. The value of R_{BJA} is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The Power dissipation P_{DSM} is based on R _{BJA} t ≤ 10s value and the maximum allowed junction temperature of 150° C. The value in any given application depends on the user's specific board design.

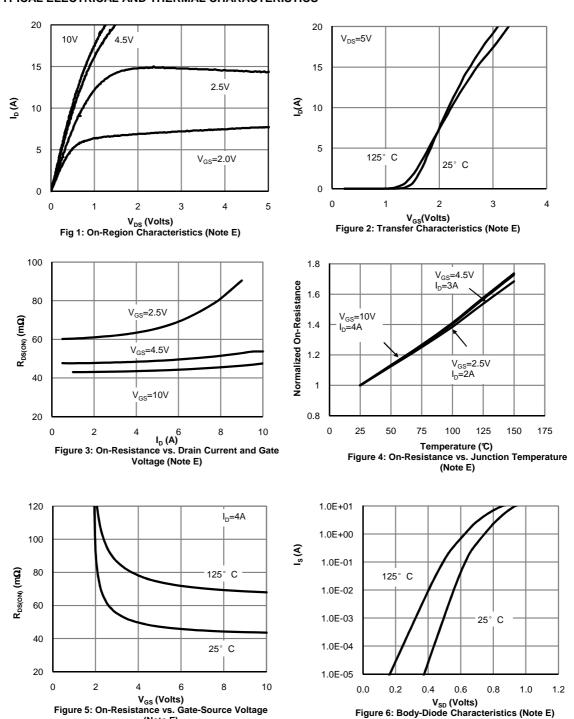
THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

B. The power dissipation P_D is based on $T_{J(MAX)}=150^\circ$ C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

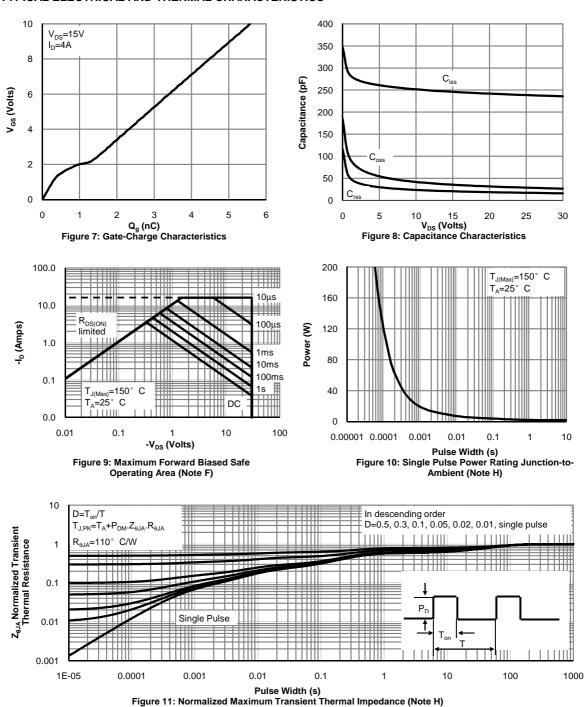
C. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150° C. Ratings are based on low frequency and duty cycles to keep initial $T_J = 25^{\circ} C$.

D. The $R_{\theta JA}$ is the sum of the thermal impedance from junction to case $R_{\theta JC}$ and case to ambient.

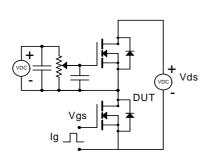
E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max.

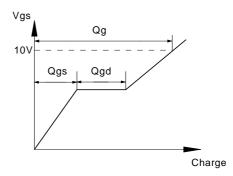

F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of T_{J(MAX)}=150° C. The SOA curve provides a single pulse rating. G. The maximum current rating is package limited.

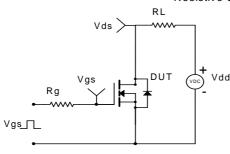
H. These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with T_A=25° C.

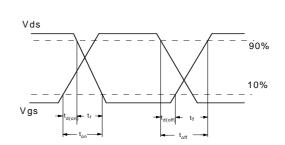

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

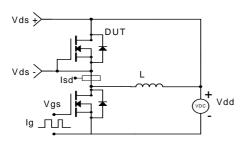
(Note E)

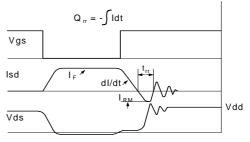



TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS




Gate Charge Test Circuit & Waveform




Resistive Switching Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

