

AO4427 30V P-Channel MOSFET

General Description

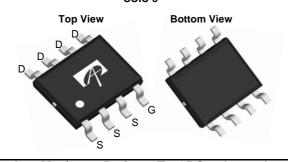
The AO4427 uses advanced trench technology to provide excellent $R_{\text{DS(ON)}}$, and ultra-low low gate charge with a 25V gate rating. This device is suitable for use as a load switch or in PWM applications. The device is ESD protected.

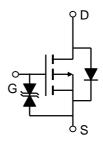
Product Summary

 $V_{DS}(V) = -30V$

 $I_D = -12.5 \text{ A } (V_{GS} = -20 \text{V})$

 $R_{DS(ON)}$ < 12m Ω (V_{GS} = -20V)


 $R_{DS(ON)} < 14 m\Omega \; (V_{GS} = \text{-}10 \text{V})$


ESD Rating: 2KV HBM

100% UIS Tested 100% Rg Tested

SOIC-8

Absolute Maximum Ratings T_A=25℃ unless otherwise noted

Parameter		Symbol	Maximum	Units	
Drain-Source Voltage		V_{DS}	-30	V	
Gate-Source Voltage		V_{GS}	±25	V	
Continuous Drain	T _A =25℃		-12.5		
Current AF	T _A =70℃	I_D	-10.5	Α	
Pulsed Drain Current ^B		I _{DM}	-60		
	T _A =25℃	P_{D}	3	W	
Power Dissipation ^A	T _A =70℃	LD	2.1	VV	
Junction and Storage Temperature Range		T_J , T_{STG}	-55 to 150	Ç	

Thermal Characteristics									
Parameter	Symbol	Тур	Max	Units					
Maximum Junction-to-Ambient AF	t ≤ 10s	t ≤ 10s		40	€\M				
Maximum Junction-to-Ambient A	Steady-State	$R_{ heta JA}$	54	75	€\M				
Maximum Junction-to-Lead ^C	Steady-State	$R_{\theta JL}$	21	30	℃/W				

Electrical Characteristics (T_J=25℃ unless otherwise noted)

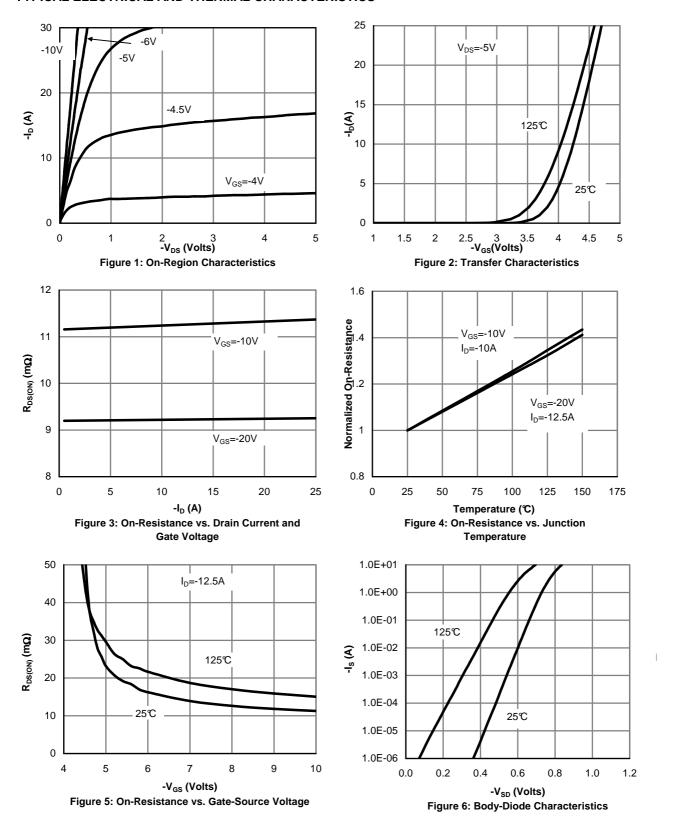
Symbol	Parameter	Conditions	Min	Тур	Max	Units
STATIC F	PARAMETERS					
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = -250 \mu A, V_{GS} = 0 V$	-30			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =-30V, V _{GS} =0V			-1	^
		T _J =55℃			-5	μΑ
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} =±25V			±10	μΑ
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$ $I_{D}=-250\mu A$	-1.7	-2.5	-3	V
$I_{D(ON)}$	On state drain current	V _{GS} =-10V, V _{DS} =-5V	-60			Α
R _{DS(ON)} Static D	Static Drain-Source On-Resistance	V _{GS} =-20V, I _D =-12.5A		9.4	12	mΩ
		T _J =125℃		12.2	15	11152
	Static Dialii-Source Oil-Resistance	V _{GS} =-10V, I _D =-10A		11.5	14	mΩ
		V _{GS} =-4.5V, I _D =-5A		32		mΩ
g _{FS}	Forward Transconductance	V _{DS} =-5V, I _D =-12.5A		24		S
V_{SD}	Diode Forward Voltage	I _S =-1A,V _{GS} =0V			-1	V
I _S	Maximum Body-Diode Continuous Curre			-4.2	Α	
DYNAMIC	PARAMETERS					
C _{iss}	Input Capacitance			2330	2900	pF
C _{oss}	Output Capacitance	V_{GS} =0V, V_{DS} =-15V, f=1MHz		480		pF
C_{rss}	Reverse Transfer Capacitance			320	448	pF
R_g	Gate resistance	V_{GS} =0V, V_{DS} =0V, f=1MHz	3.4	6.8	10	Ω
SWITCHI	NG PARAMETERS					
Q_g	Total Gate Charge	-V _{GS} =-10V, V _{DS} =-15V,		41	52	nC
Q_{gs}	Gate Source Charge	V _{GS} =-10V, V _{DS} =-15V, I _D =-12.5A		10		nC
Q_{gd}	Gate Drain Charge	1D- 12.57		12		nC
t _{D(on)}	Turn-On DelayTime			12.8		ns
t _r	Turn-On Rise Time	V_{GS} =-10V, V_{DS} =-15V, R_L =1.2 Ω ,		10.3		ns
t _{D(off)}	Turn-Off DelayTime	R_{GEN} =3 Ω		49.5		ns
t _f	Turn-Off Fall Time]		29		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =-12.5A, dI/dt=100A/μs		28	35	ns
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =-12.5A, dI/dt=100A/μs		20		nC

A: The value of R _{BJA} is measured with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with

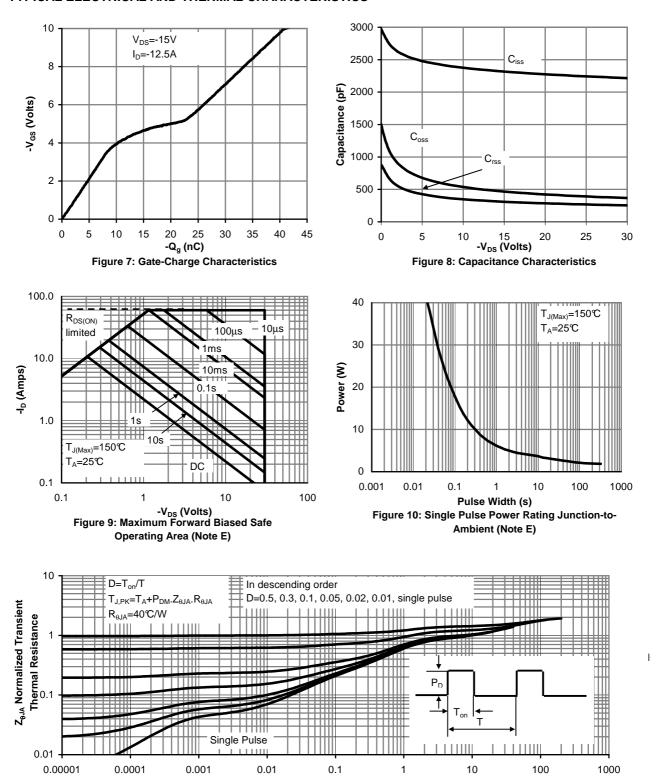
THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

T $_{\rm A}\!\!=\!\!25{\rm ^\circ\!\!C}.$ The value in any given application depends on the user's specific board design.

 $[\]label{eq:B:Repetitive rating} \textbf{B: Repetitive rating, pulse width limited by junction temperature.}$


C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6 are obtained using <300 μs pulses, duty cycle 0.5% max.


E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T A=25°C. The SOA curve provides a single pulse rating.

F. The current rating is based on the $t \le 10s$ junction to ambient thermal resistance rating. Rev8: Nov. 2010

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance