

LV0223CV

Monolithic Linear IC Front Monitor OE-IC for Optical Pickups

ON Semiconductor®

<http://onsemi.com>

Overview

The LV0223CV is a front monitor optoelectronic IC for optical pickups that has a built-in photo diode compatible with three waveforms. LV0223CV is small size and type CSP packages.

Functions

- PIN photodiode compatible with three wavelengths incorporated.
- Gain adjustment (-6dB to +6dB in 256 steps) through serial communication.
- Amplifier to amplify differential output.

Specifications

Maximum Ratings at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC}		6	V
Allowable power dissipation	P _d	Glass epoxy both-side substrate 55mm × 45mm × 1.6mm Copper foil area (head: about 90% Tail: about 90%), Ta=75°C	143	mW
Operating temperature	T _{opr}		-20 to +75	°C
Storage temperature	T _{stg}		-40 to +100	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Recommended Operating Conditions at Ta = 25°C

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Operating supply voltage	V _{CC}		4.5	5	5.5	V
Output load capacitance	C _O		12	20	33	pF
Output load resistance	Z _O		3			kΩ

LV0223CV

Electrical Characteristics at $T_a = 25^\circ\text{C}$, $V_{CC} = 5\text{V}$, $RL = 6\text{k}\Omega$, $CL = 20\text{pF}$

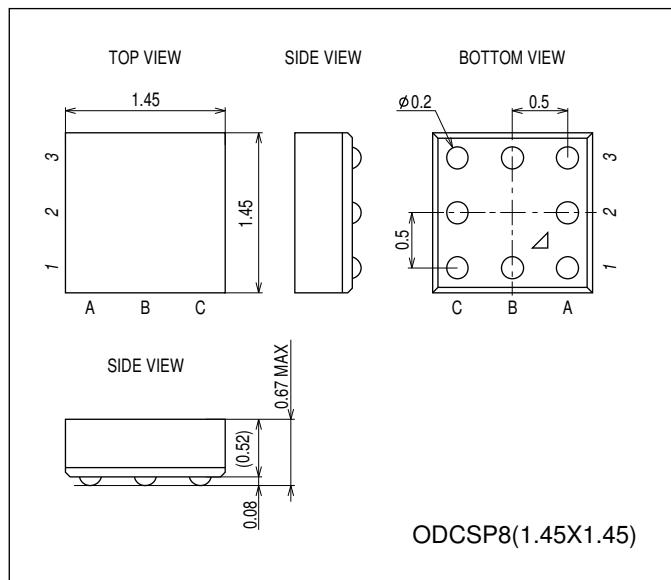
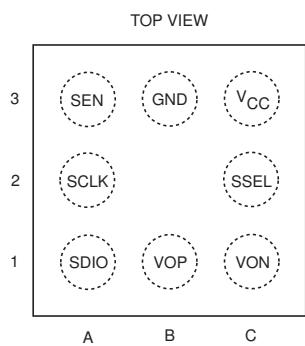
Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Current dissipation	I_{CC}		13.3	17	22.1	mA
Sleep current	$I_{S\text{lp}}$				0.6	mA
Output voltage when shielded	V_C	At shielding	1.85	2.0	2.15	V
Output offset voltage	V_{ofs}	At shielding, voltage between VOP-VON	-30	0	30	mV
Temperature dependence of offset voltage *1	V_{ofs}	$T_a = -10$ to $+75^\circ\text{C}$	-60	0	60	$\mu\text{V}/^\circ\text{C}$
Optical output voltage *1	VLC	Low Gain, $\lambda = 780\text{nm}$, $G = 0\text{dB}$	0.21	0.262	0.31	$\text{mV}/\mu\text{W}$
Voltage between VOP-VON	VLD	Low Gain, $\lambda = 650\text{nm}$, $G = 0\text{dB}$	0.22	0.275	0.33	$\text{mV}/\mu\text{W}$
	VLB	Low Gain, $\lambda = 405\text{nm}$, $G = 0\text{dB}$	0.14	0.172	0.21	$\text{mV}/\mu\text{W}$
	VM1C	Middle1 Gain, $\lambda = 780\text{nm}$, $G = 0\text{dB}$	0.66	0.83	0.99	$\text{mV}/\mu\text{W}$
	VM1D	Middle1 Gain, $\lambda = 650\text{nm}$, $G = 0\text{dB}$	0.70	0.87	1.05	$\text{mV}/\mu\text{W}$
	VM1B	Middle1 Gain, $\lambda = 405\text{nm}$, $G = 0\text{dB}$	0.43	0.54	0.65	$\text{mV}/\mu\text{W}$
	VM2C	Middle2 Gain, $\lambda = 780\text{nm}$, $G = 0\text{dB}$	1.97	2.46	2.95	$\text{mV}/\mu\text{W}$
	VM2D	Middle2 Gain, $\lambda = 650\text{nm}$, $G = 0\text{dB}$	2.07	2.58	3.10	$\text{mV}/\mu\text{W}$
	VM2B	Middle2 Gain, $\lambda = 405\text{nm}$, $G = 0\text{dB}$	1.29	1.62	1.94	$\text{mV}/\mu\text{W}$
	VH1C	High1 Gain, $\lambda = 780\text{nm}$, $G = 0\text{dB}$	3.35	4.19	5.02	$\text{mV}/\mu\text{W}$
	VH1D	High1 Gain, $\lambda = 650\text{nm}$, $G = 0\text{dB}$	3.52	4.40	5.28	$\text{mV}/\mu\text{W}$
	VH1B	High1 Gain, $\lambda = 405\text{nm}$, $G = 0\text{dB}$	2.20	2.75	3.30	$\text{mV}/\mu\text{W}$
	VH2C	High2 Gain, $\lambda = 780\text{nm}$, $G = 0\text{dB}$	5.72	7.15	8.58	$\text{mV}/\mu\text{W}$
	VH2D	High2 Gain, $\lambda = 650\text{nm}$, $G = 0\text{dB}$	6.02	7.52	9.02	$\text{mV}/\mu\text{W}$
	VH2B	High2 Gain, $\lambda = 405\text{nm}$, $G = 0\text{dB}$	3.76	4.70	5.64	$\text{mV}/\mu\text{W}$
Light output voltage adjustment range *1	G	G=0dB reference, absolute value of adjustment width	5.5	6.0	6.5	dB
D range *1	VoD	Voltage between VOP-VON	1700	2200		mV
Frequency characteristics *1, *2	FcC	-3dB(1MHz reference), $\lambda = 780\text{nm}$ Light input = $40\mu\text{W}(\text{DC}) + 20\mu\text{W}(\text{AC})$	60	80		MHz
	FcD1	-3dB(1MHz reference), $\lambda = 650\text{nm}$ Light input = $40\mu\text{W}(\text{DC}) + 20\mu\text{W}(\text{AC})$ Low/Middle1/2 Gain	60	85		MHz
	FcD2	-3dB(1MHz reference), $\lambda = 650\text{nm}$ Light input = $40\mu\text{W}(\text{DC}) + 20\mu\text{W}(\text{AC})$ High1/2 Gain	60	80		MHz
	FcB1	-3dB(1MHz reference), $\lambda = 405\text{nm}$ Light input = $40\mu\text{W}(\text{DC}) + 20\mu\text{W}(\text{AC})$ Low/Middle1/2 Gain	60	85		MHz
	FcB2	-3dB(1MHz reference), $\lambda = 405\text{nm}$ Light input = $40\mu\text{W}(\text{DC}) + 20\mu\text{W}(\text{AC})$ High1/2 Gain	60	80		MHz
Settling time *1	Tset			10	15	ns
Response time *1	Tr, Tf	$V_o = 0.9V_{p-p}$, output level 10 to 90% $f_c = 10\text{MHz}$, duty=50%		4	10	ns
Overshoot *1	Ovst	$V_o = 0.9V_{p-p}$, $G = 0\text{dB}$			15	%
Undershoot *1	Unst	$V_o = 0.9V_{p-p}$, $G = 0\text{dB}$			15	%
Linearity *1	Lin	At output voltage 0.5V and 1.0V (Between VOP-VON)	-1	0	1	%
Light-output voltage temperature dependence Voltage between VOP-VON *1, *3	TC	$\lambda = 780\text{nm}$, 25°C reference	7	10	13	%
	TD	$\lambda = 650\text{nm}$, 25°C reference	-1	2	5	%
	TB	$\lambda = 405\text{nm}$, 25°C reference	-1	2	5	%

Item with *1 mark indicate the design reference value.

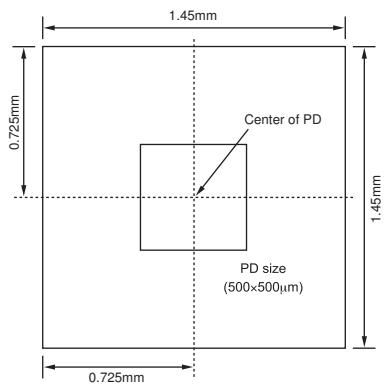
Item with *2 mark indicate the frequency characteristics when VOP and VON are applied individually.

The frequency characteristics are for the output voltage adjustment range is -6 to +6dB

Item with *3 mark indicates the temperature dependence for the case of High2 / High1 / Middle2 / Middle1 / Low gain and for the case when the temperature is 25 to 75°C for the output voltage adjustment range of -6 to +6dB

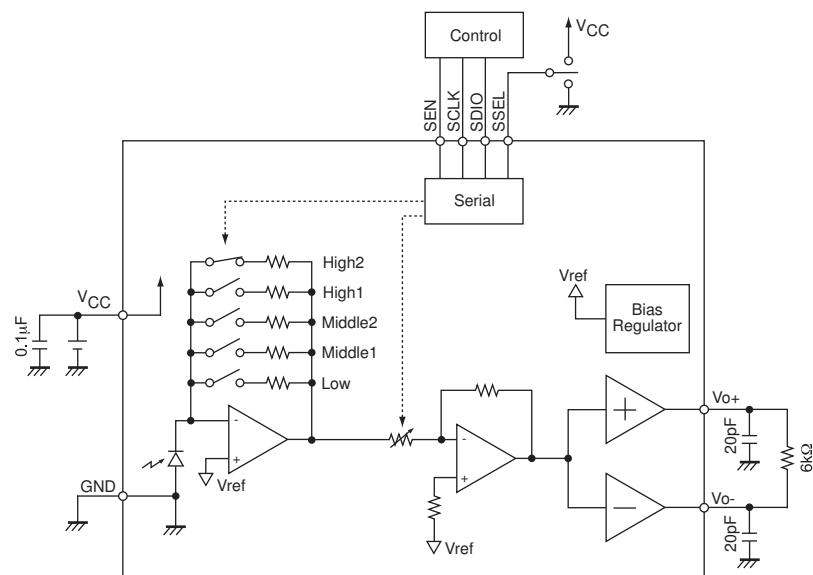


[Expression of output voltage]

$$V_N = (\text{sensitivity} / 2) \times 5400 / (5400-16 \times \text{GCAstep}) \times \text{light intensity} (\mu\text{W})$$


Package Dimensions

unit : mm (typ)

3407


Pin Assignment

Pin No.	Pin name	Function
1A	SDIO	Serial communication Data pin
1B	VOP	Positive side output pin
1C	VON	Negative side output pin
2A	SCLK	Serial communication Clock pin
2C	SSEL	Register selection pin
		SSEL = Low : Address 00 to 0Fh used
		SSEL = High : Address 10 to 1Fh used
		SSEL = Open : Address 70 to 7Fh used
3A	SEN	Serial communication Enable pin
3B	GND	GND pin
3C	V _{CC}	Power supply voltage pin

PD assignment

*PD size for reference to be used for design

Block diagram and Test circuit diagram

Register table

Enable selection of the register group from the SSEL pin.

SSEL = Low

SSEL = High

Continued on next page.

Continued from preceding page.

SSEL = Open

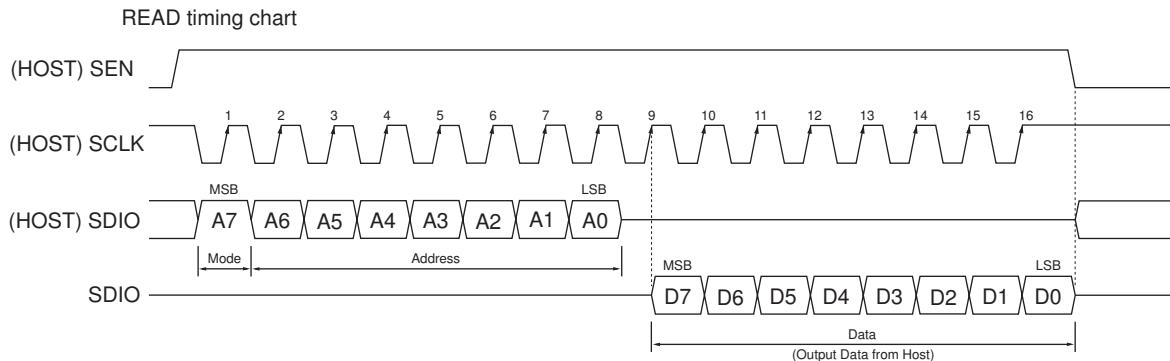
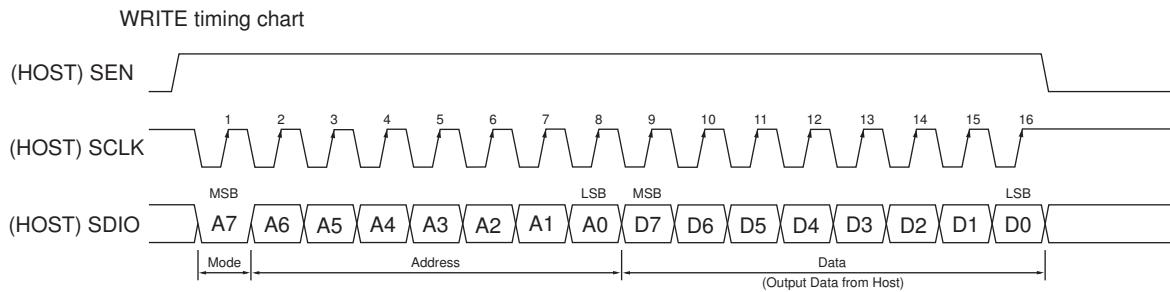
	Address	7	6	5	4	3	2	1	0
Name	70h	POWER			IV GAIN SEL			GAIN SEL	
Default		00			00			1	0
Value		11: Power on 00/01/10: Sleep			*4			00/01: BD 10: DVD 11: CD	*4
Name		BD GAIN							
Default	71h	1	1	1	1	1	1	1	1
Value		00000000 to 11111111							
Name	72h	DVD GAIN							
Default		1	1	1	1	1	1	1	1
Value		00000000 to 11111111							
Name	73h	CD GAIN							
Default		1	1	1	1	1	1	1	1
Value		00000000 to 11111111							
Name	7Eh	TEST1 (*1)							
Name	7Fh	TEST2 (*1)							

*1 TEST1 and TEST2 are either the time when power is applied or “00000000” is set. Do not attempt to change “00000000” during operation.

“00000000” is returned when reading is made.

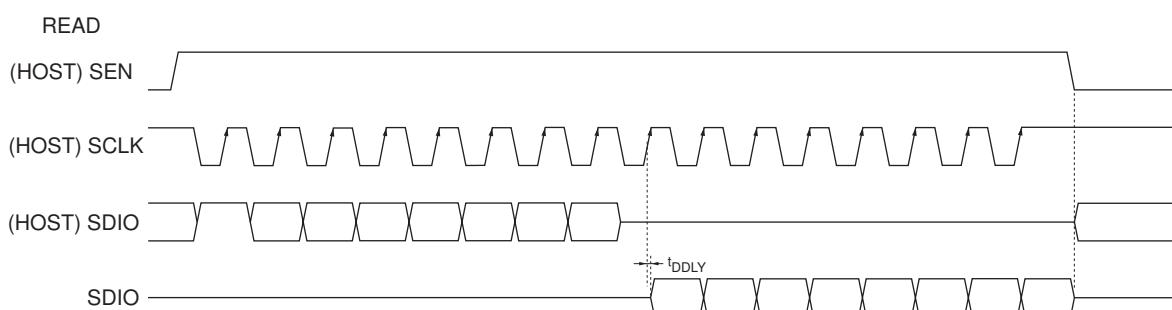
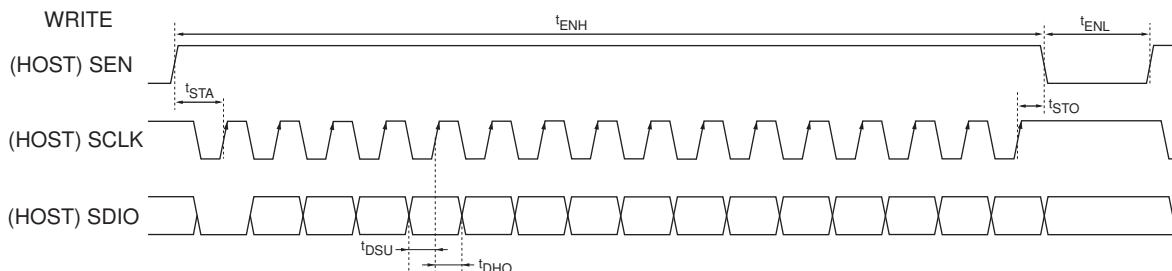
*2 No problem in terms of operation occurs even when writing is made to the address 04h to 0Dh and 14h to 1Dh and 74h to 7Dh.

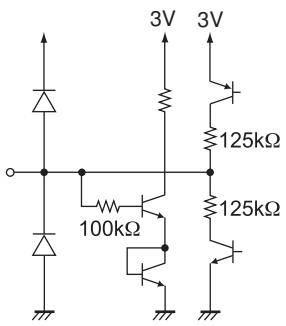
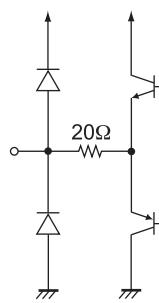
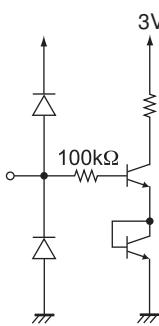
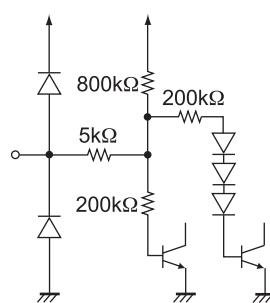
“00000000” is returned when this address is read.



*3 When I performed address reading except the register group set by an SSEL terminal, I keep Hi-Z without paying a value.

*4 Please set the gain setting of the I/V amplifier referring to the table below.

I/V amplifier gain setting table



00h/10h/70h		5	4	1
Name		IV GAIN1 SET		IV GAIN2
Default		00		1
IV GAIN	High2	00/01		1
	High1	10/11		1
	Middle2	00/01		0
	Middle1	10		0
	Low	11		0





Serial protocol

SDIO pin load / CL=20pF (The table below shows the design reference value.)

Parameter	Symbol	Min.	Typ.	Max.	Unit
SCL clock frequency Write	f_{SCL}	0		10	MHz
SCL clock frequency Read	f_{SCL}	0		4	MHz
SDIO data setup time	t_{DSU}	50			ns
SDIO data hold time	t_{DHO}	50			ns
SDIO output delay	t_{DDLY}		10	80	ns
SEN "H" period	t_{ENH}	1.6			μ s
SEN "L" period	t_{ENL}	200			ns
SCL rise time after SEN rise	t_{STA}	60			ns
SEN fall time after final SCL rise	t_{STO}	100			ns
Serial input "H" voltage	V_{IH}	2.4		3.7	V
Serial input "L" voltage	V_{IL}			0.6	V
SDIO output "H" voltage	V_{OH}	2.5	2.9	3.3	V
SDIO output "L" voltage	V_{OL}	0	0.3	0.8	V

Pin	Type	Equivalent circuit diagram
SDIO	Input Output	
VOP VON	Output	
SCLK SEN	Input	
SSEL	Input	

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.