

SANYO Semiconductors **DATA SHEET**

LA72912V — FM Modulator and Demodulator IC

Overview

The LA72912V is a FM modulation and demodulation single-chip IC. Its adjustment free modulation/demodulation circuit significantly reduces the number of peripheral circuits required and can contribute to lower production costs.

Functions

- ASK modulation and demodulation
- Video signal FM modulation and demodulation
- Video signal emphasis and de-emphasis function
- Drop-Out detecting function of Video FM signal
- FM mute function at Second-Call

Specifications

Maximum Ratings at Ta = 25°C

_				
Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} max		7.0	٧
Allowable power dissipation	Pd max		300	mW
Operating temperature	Topr	Ta ≤ 70°C *	-30 to +70	°C
Storage temperature	Tstg		-40 to +150	°C

^{*} Mounted on a 114.3mm \times 76.1mm \times 1.6mm, glass epoxy board.

Recommended Operating Conditions at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Recommended supply voltage	V _{CC}		5.0	>
Allowable operating voltage range	V _{CC} op	Ta = -30 to +70°C	4.7 to 5.5	V

- Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications of our customer who is considering such use and/or outside the scope of our intended standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
- Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

Electrical Characteristics at Ta = 25°C, $V_{CC} = 5V$

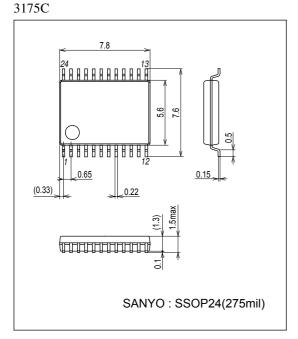
DC CHARACTERISTICS T6 = 0.4V, T17 = 2.0V, T18 = 0.4V

D	0		OUT	0		Ratings		11.2
Parameter	Symbol	In	OUT	Conditions	min	typ	max	Unit
Control terminal	CNT6L	T6		Low level of control terminal of ALL mode.	0		0.4	V
(Pin6,9) Low level	CNT17L	T17		T6 = 0.4V(DEMOD mode),T17 = 0.4V (Standby mode)				
Control terminal	CNT6H	T6		High level of input terminal of ALL mode	2.0		5.0	V
(Pin6,9)High level	CNT17H	T17		T6 = 2.0V (MOD mode), T17 = 2.0V (Normal mode)				
Input5 Low level	IN5L	T5		Low level of input terminal of MOD mode	0		0.4	V
				T6 = 2.0V, T17 = 2.0V, T18 = 0.4V				
Input5 High level	IN5H	T5		High level of input terminal of MOD mode	2.0		5.0	V
				T6 = 2.0V, T17 = 2.0V, T18 = 0.4V				
Input18 Low level	IN18L	T18		Low level of input terminal of MOD mode	0		0.4	V
				T5 = 0.4V, T6 = 2.0V, T17 = 2.0V				
Input18 High level	IN18H	T18		High level of input terminal of MOD mode	2.0		5.0	V
				T5 = 0.4V, T6 = 2.0V, T17 = 2.0V				
Output18 terminal	OPH18		T18	DEMOD mode: FM-Signal input	4.7			V
High level				T6 = 0.4V, T17 = 2.0V, Pull-UP:15KΩ				
Output18 terminal	OPL13		T18	T18: DEMOD mode: FM No-signal	0	0.25	0.4	V
Low level	OPL18			Measure the sink level of output terminal.				
				T6 = 0.4V, T17 = 2.0V, Pull-UP:15KΩ				
InpuT20 Low level	IN20L	T20	T20	Voltage of terminal at AGC ON	0		3	V
				T6 = 0.4V, T17 = 2.0V				
InpuT20 High level	IN20H	T20	T20	Voltage of terminal at AGC OFF	4.5		5.0	V
				T6 = 0.4V, T17 = 2.0V				
5pin AC input dynamic	ACIN5	T5A	T3	Input amplitude level of FM signal			1000	mVp-p
range				Freq: 11.5MHz to 13.5MHz				
16pin AC input	ACIN16	T24A	T3	Maximum input level of T24A at Video signal			1.5	Vp-p
dynamic range								

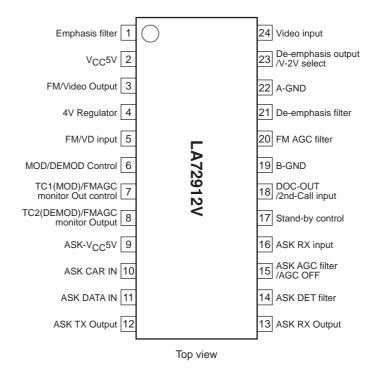
Video FM Modulation Block (MOD) T6=2.0V,T17=2.0V,T18=0.4V

Damanatan	Cymhal	1	OUT			l lait		
Parameter	Symbol	In	001	Conditions	min	typ	max	Unit
Current dissipation	I _{CC} R			measure the currents into pins 2 (MOD mode)	22.0	27.0	32.0	mA
FM modulator output	VFM1		T3	Measure the output level on T3 (No signal input)		1.8	2.2	Vp-p
level				It is load impedance 200 Ω between T3-GND.				
FM Mute output level	VFM2		T3	Measure the T3 output level with 2nd call	0	10	20	mVp-p
Carrier frequency	FFM		Т3	Measure the output frequency on T3 with no signal input	10.9	11.5	12.1	MHz
FM output Second harmonic distortion	THD2		T3	Measure the second harmonics distortion with the above condition		-30	-20	dB
Deviation	DEV	T24A	T3	With T24A 100% White 1Vp-p signal,	1.9	2.0	2.1	MHz
Deviation	DLV	127/	13	Measure the deviation on T3	1.5	2.0	2.1	IVIIIZ
FM modulator linearity (11.5MHz to 13.5MHz)	LMOD	T24A	Т3	Let f2.85, f3.35 and f3.85 be the output frequency when 2.85V, 3.35V and 3.85V is applied to T24A $LMOD = \frac{f3.35 - (f3.85 + f2.85) / 2}{f3.85 - f2.85} \times 100$	-2	0	+2	%
Emphasis gain	GEMP	T24A	T20	With V _{IN} a 300mVp-p 10kHz sine wave, Measure the ratio of the levels on T24A and T20	-7.5	-6.0	-4.5	dB
Main linear emphasis characteristics(1)	GME1	T24A	T20	With V _{IN} a 300mVp-p 500kHz sine wave, Measure the ratio of the levels on T24A and T20	0.0	1.5	3.0	dB
Main linear emphasis characteristics(2)	GME2	T24A	T20	With V _{IN} a 300mVp-p 2MHz sine wave, Measure the ratio of the levels on T24A and T20	4.0	5.5	7.0	dB
White clipping level	LWC	T24A	T20	With V _{IN} a 1.5Vp-p 100% white video signal. Measure the white clipping level on T20	180	200	220	%
Dark clipping level	LDC	T24A	T20	With V _{IN} a 1.5Vp-p 100% white video signal. Measure the dark clipping level on T20.	-60	-50	-40	%
FM stop beginning delay time (VD characteristic 1B)	TC1	T5	Т3	$C7 = 0.01 \mu F$, Time from fall of T5 signal to doing of FM carrier of T3 STOP	240	300	360	μs
FM stop time (VD characteristic2A)	TC2	T5	Т3	$C8 = 0.001 \mu F$, Stop time of FM carrier of T3	30	40	50	μS
Minimum VD pulse width	VDT	T5	Т3	C7 = 0.01µF, Minimum VD pulse width to which TC1B is normally output	63			μS

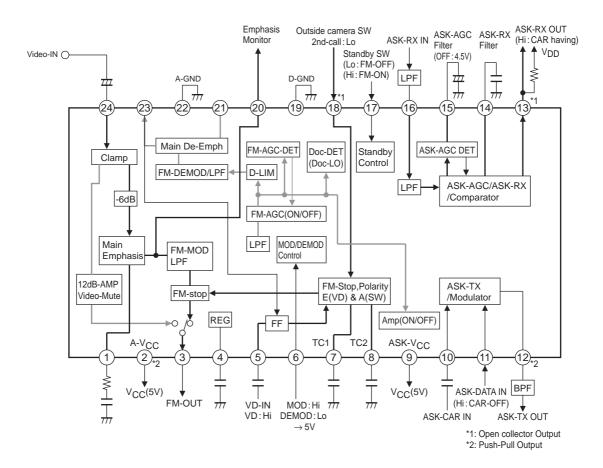
Video FM De-modulation Block (DEMOD) T6=0.4V,T17=2.0V

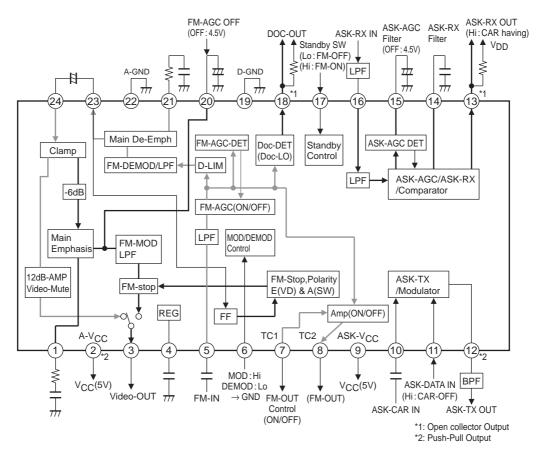

Parameter	Symbol	In	OUT	Conditions	min	Ratings	mov	Unit
Current dissipation	IccP	+		Measure the currents into pin 2 (DEMOD mode)	min 26.0	typ 32.0	max 38.0	mA
Video output level	VOUT	T5A	Т3	Demodulation level, when the FM signal of 2.2MHz	2.09	2.2	2.31	Vp-p
video odipat ievei	1001	10/1	10	deviation. Load impedance = $1k\Omega$ T3-GND.	2.00	2.2	2.01	VPP
Video output level B	V _{OUT} B	T5A	Т3	Demodulation level, when the FM signal of 2.0MHz	1.9	2.0	2.1	Vp-p
				deviation. Load impedance = $1k\Omega$ T3-GND.				
				(In this case only, V _{CC} make 4.5V to 5.5V.)				
FM stop detection level	DOC1	T5A	T18	T5 = 11.5MHz, 300mVp-p. Measure T20 voltage		40	60	mVp-p
(DOC characteristic 1)		T20	T20	(V20). Set T20 V20 (AGC-Fix). T5 input level when T5 amplitude is decrease gradually, and				
				T18 becomes "Low"				
(Drop Delay Down)	DDD	T5A	T18	Shift time from T5 = 300mVp-p → 0mVp-p to	0.5	1.5	2.5	μS
		T20	T20	T18 "Low".				
FM return judgment	DOC2	T5A	T18	T5 = 11.5MHz, 300mVp-p, Measure T20 Voltage		60	90	mVp-p
level		T20	T20	(V20). Set T20 V20 (AGC-Fix). T5 inputs the level				
				when T5 amplitude is increase gradually, and T18 becomes "High"				
Video DC level when	DOC2B	T5A	T23	Confirmation of output of Video signal from T3.	0.5	1.0	1.5	V
returning		T20		Measurement of DC level.				-
(Drop Delay Rise)	DWR	T5A	T18	Shift time from T5 = 0mVp-p →3 00mVp-p to	0.2	1.5	2.5	μsec
Return operation delay		T20	T20	T18 "High"				
time								
4V Regulator	VREG		T4	Measurement of T4 DC level.	3.9	4.0	4.3	V
Range of input	ACIN5	T5A	Т3	DEV = 2.0MHz. Input amplitude level of FM		500	1000	mVp-p
Dynamic range	DO	Τ	то.	signal. (T5A: 11.5MHz to 13.5MHz)	0		10	0/
DG	DG	T5A	T3		0	6	10	%
DP	DP	T5A	Т3		0	6	10	deg
Output voltage at mute	MUV		Т3	Mute level measurement of T3	0	10	20	IRE
FM demodulation	VDEM11	T5A	T23	T5A = 11.0MHz, 100mVp-p, 200mVp-p and	0.3	8.0	1.3	V
voltage (11.0M)	VDEM12			400mVp-p. Each T23 voltage measurement				
FM demodulation	VDEM13 VDEM21	T5A	T23	T5A = 12.5MHz, 100mVp-p, 200mVp-p and	0.7	1.2	1.7	V
voltage	VDEM22	IJA	123	400mVp-p.	0.7	1.2	1.7	V
(12.5M)	VDEM23			Each T23 voltage measurement				
FM demodulation	VDEM31	T5A	T23	T5A = 14MHz, 100mVp-p, 200mVp-p and	1.1	1.6	2.1	V
voltage	VDEM32			400mVp-p				
(14.0M)	VDEM33			Each T23 voltage measurement				
FM demodulation	LDEM1			Calculate FM demodulation linearity	-2	0	+2	%
linearity1,2,3	LDEM2			LDEM1 = {[VDEM21 - (VDEM11 + VDEM31) / 2]				
	LDEM3			/ (VDEM31 - VDEM11)}×100				
				LDEM2 = {[VDEM22 - (VDEM12 + VDEM32) /2] / (VDEM32 - VDEM12)}×100				
				LDEM3 = {[VDEM32 - (VDEM13 + VDEM33) / 2]				
				/ (VDEM33 - VDEM13)}×100				
FM demodulation	SDEM1	1		Calculate FM recovery Sensitivity with consider	0.28	0.33	0.38	V/MHz
Sensitivity1,2,3	SDEM2			pin 3 output level conversion ratio.				
	SDEM3			SDEM1 = (VDEM31-VDEM11)/3.0				
				SDEM2 = (VDEM32-VDEM12)/3.0				
				SDEM3 = (VDEM33-VDEM13)/3.0				
Main linear de-emphasis	GMED	T5A	T23	T5 = 200mVp-p FM signal	481	535	589	mVp-p
amplitude				(fm = 10kHz, Center Carrier = 12.5MHz, DEV = 2.0MHz) Signal level of T23				
Main linear	GMED1	T5A	T23	T5 = 200mVp-p FM signal (fm = 500kHz, Center	-3.5	-1.5	+0.5	dB
de-emphasis	O.I.L.D.	1.0,1	.20	Carrier = 12.5MHz, DEV = 2.0MHz). Signal level	0.0	1.0	. 0.0	
Characteristics(1)		1		of T23 versus GMRD (Ratio of GMED).				
Main linear	GMED2	T5A	T23	T5 = 200mVp-p FM signal (fm = 2MHz, Center	-6.5	-4.5	-2.5	dB
de-emphasis				Carrier = 9.25MHz, DEV = 2.0MHz). Signal level				
Characteristics(2)				of T23 versus GMRD (Ratio of GMED)				

ASK Block T17=0.4V


Damanatan	O. made ad	1	In OUT Conditions			Ratings		Unit
Parameter	Symbol	ın	001	Conditions	min	typ	max	Unit
Current dissipation at standby	I _{CC} S	T17		At standby mode, measures include current to pin2,9. T17 = 0.4V, T15 and T20:open	10.8	13.0	15.5	mA
Current dissipation at standby at MOD-AGC-OFF	I _{CC} Sb	T17 T15		At standby mode, measures include current to pin2,9. T17 = 0.4V, T15 = 5V, T20:open	12.8	16.0	19.2	mA
Current dissipation at standby at DEMOD-AGC-OFF	I _{CC} Sc	T17 T15 T20		At standby mode, measures include current to pin2,9. T17 = 0.4V, T15 = 5V, T20 = 5V	16.8	21.0	25.2	mA
Standby release time(1) (FM stop→release)	S _{ASK} 1	T6 T17	Т3	T6 = 2.0VDC T17 = 0V→2V (Standby release) Time until FM carrier is output to T3.	0.0	6.0	12.0	μS
Standby release time(2) (Video signal stop →release)	S _{ASK} 2	T6 T5A T17	Т3	T6 = 0.4V, T5 = DEV = 2.0MHz 100% white video signal of FM signal. T17 = 0V \rightarrow 2V (Standby release) Time until white 100% signal is output to T3	2.0	7.0	12.0	μS
ASK Transmitting time "transmission"	T _{ASK} 1	T10A T11	T12	T10A = 1MHz,0/2V Pulse T11 = 20KHz, 0/2VPulse. Measure T12 signal appear time			0.1	ms
ASK Transmitting time "Receive"	T _{ASK} 2	T16A	T13	T16 = 1MHz, 300mVp-p-SIN wave Measure time T13 appear detected T16 signal			0.1	ms
ASK transmission setup time	W _{ASK}	T10A T11	T12	T10A = 1MHz, 0-2V-pulse T11 = 20KHz,0-2V-pulse Measure T11 input interval time when T10A input		10	100	ms
ASK minimum detect level	Vask	T16A	T13	Measure T16 minimum level at T13 is normally condition	0.2		3	Vp-p
ASK start up time	O _{ASK}	T16A	T13	Measure time ASK working from Power-ON	-	30	300	ms
ASK demodulation duty ratio	D _{ASK}	T16A	T13	T16 = T12 output signal (0-2Vp-p) Measure ASK Duty difference with 50% DASK = (pulse width µs / 50µs) - 50% × 100%	-15	-2	11	%

Package Dimensions


unit: mm (typ)


Pin Assignment

Block Diagram and Application Circuit Example1 Modulation (Outside camera)

Application Circuit Example2 Demodulation (Inside monitor)

Pin Function

Pin No.	Pin name	FM MOD mode(Outside camera)	FM DEMOD mode(Inside Monitor)	Note
1	Emphasis filter	Emphasis filter connection pin	Non connect(Hi-Z)	If you no need, this pin is open.
2	V _{CC} 5V	V _{CC} for FM modulation.	V _{CC} for FM demodulation.	
3	FM/Video Output	FM Output	Video Output	Push-pull output
	0/5	(R _O =200Ω:1.8Vp-p)	(R _O =1kΩ: 2Vp-p)	
4	4V Regulator	FM modulate block and ASK bock supply reference voltage.	FM demodulate block and ASK bock supply reference voltage.	
5	FM/VD input	VD Input. (Hi: over 2V, Low: under 0.4V) (VD DET: High)	FM Input. (Recommend Level: 100 to 620mVp-p)	DEMOD mode: Set 3.3V by internal bias. (34k Ω /66k Ω)
6	MOD/DEMOD Control	Set over 2V DC voltage.	Set under 0.4V DC voltage.	Outside camera / Inside monitor setting.
7	TC1(MOD)/ FMAGC monitor Out control	Set capacitor for TC1	FMAGC monitor out control GND: Monitor ON / V _{CC} : Monitor OFF	Can do second inside monitor addition
8	TC2(DEMOD)/ FMAGC monitor Output	Set capacitor for TC2	FMAGC monitor output	Can do second inside monitor addition
9	ASK-V _{CC} 5V	V _{CC} for ASK	←	
10	ASK CAR IN	ASK carrier Input. (Recommend below 3Vp-p)	←	2.1V by internal bias. (50k Ω)
11	ASK DATA IN	ASK Data Input. (Hi: more than 2V, Lo: below 0.4V)	←	
12	ASK TX Output	ASK modulated signal Output	←	Push-pull output
13	ASK RX Output	ASK Demodulated Output	←	Open collector output ASK carrier detect = Lo
14	ASK DET filter	ASK Detector filter	←	
15	ASK AGC filter /AGC OFF	AGC filter for ASK. (When AGC operate voltage is 0V to 3V, AGC stop when you add over 4.5V.)	←	
16	ASK RX input	ASK Demodulate Input	←	3.3V by internal bias. (34k Ω /66k Ω)
17	Standby control	FM blocks standby control. (FM block operate: over 2V, FM block standby: under 0.4V)	←	
18	DOC-OUT /2nd-Call input	2ND-Call input, 2ND-Call: Low (High: over 2V, Low: under 0.4V)	DOC output (When DO-DET, output is Low)	DEMOD mode: Open collector output.
19	B-GND	Circuit GND	←	
20	FM AGC filter	Emphasis monitor output	FM AGC control filter (AGC-ON:0 to 3V DC, AGC-OFF:4.5V to 5V by external DC voltage.)	MOD mode: Don't connect capacitor.
21	De-emphasis filter	Non connect(Hi-Z)	De-emphasis filter connection pin.	If you don't need, this pin is open.
22	A-GND	Circuit GND	←	
23	De-emphasis output /V-2V select	DFF for V-diff control (ON: over 2V, OFF: under 0.4V)	DE-emphasis output	MOD mode; VD diff. Count select 0V : VD through 2V : VD 1/2 diff
24	Video input	Video signal input. (from outside CCD camera: 1Vp-p).	Video signal input. (from de-emphasis block: 0.5Vp-p).	MOD mode: Maximum video input level is 1.5Vp-p.

Pin Description

	Description	Description	Control on the circuit
Pin No.	Pin Name Emphasis filter	Description Main Emphasis filter pin. Before FM Modulation, make emphasis characteristic	Equivalent circuit
		at video signal. Emphasis time constant must be matching at de-emphasis time constant. (If you don't need the emphasis, this pin is open.)	$\begin{array}{c c} & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$
2	V _{CC} 5V	V _{CC} pin. Supply voltage is 5V DC. Please connect de-coupling capacitor.	<i>π</i> Ι <i>π</i>
3	FM/Video OUT	Push-Pull output pin. MOD mode: FM carrier output. (1.8Vp-p: Rout=200 Ω) DEMOD mode: Video signal output. (2.0Vp-p: Rout=1k Ω)	MOD \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
4	Regulator filter	Internal regulator filter pin. Please connect 0.1μF (C1).	4 23κΩ 10κΩ \$50κΩ
5	FM/VD input	DEMOD mode: FM signal input. Internal DC bias is 3.3V. Please use capacitor (C1) coupling. MOD mode: VD signal input. Please input VD signal directory. Please consider input impedance.	FM Sig C1 Sig VD Sig FM Sig C1 Sig Sig Sig Sig Sig Sig Sig Si
6	MOD/DEMOD Control	MOD mode / DEMOD mode setting pin. MOD mode: Please set over 2V DC voltage. (2 to 5V). DEMOD mode: Please set under 0.4V DC voltage. (0 to 0.4V).	30µA
7	TC1(MOD)/ FMAGC monitor Control	MOD mode: TC1 filter pin. Please connect C1. DEMOD mode: FM-AGC monitor on/off control. GND: AGC-monitor ON VCC: AGC-monitor OFF	7 200Ω 1kΩ 30μA

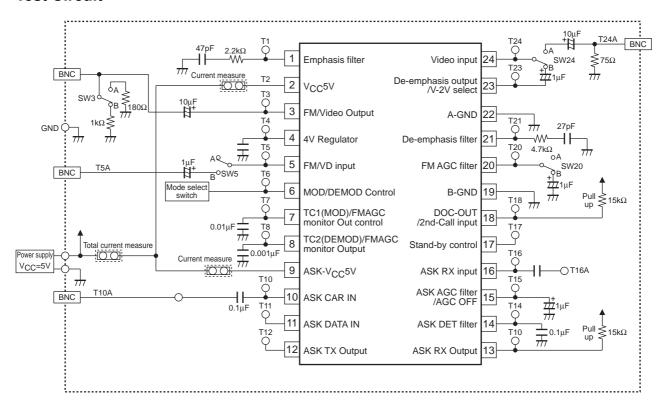
Continued on next page.

Continued from preceding page.

Continu	ed from preceding page.		
Pin No.	Pin Name	Description	Equivalent circuit
8	TC2(DEMOD)/ FMAGC monitor Output	MOD mode: TC2 filter pin. Please connect C1. DEMOD mode: FM-AGC-monitor output	8 200Ω 1kΩ 30μA
9	ASK-V _{CC} 5V	ASK block $V_{\mbox{CC}}$. Please supply DC 5V with use capacitor for de-coupling.	
10	ASK CAR IN	ASK carrier input Pin. Please connect with capacitor, 2.1V by internal biased.	ASK carrier Max 3.0Vp-p C1 1kΩ 50kΩ 2.1V
11	ASK DATA IN	ASK data input pin. L level is lower than 0.4V H level is more than 2V	ASK data 10kΩ 30μΑ 30 μΑ 30 μ
12	ASK TX Output	ASK output pin. Push-pull type output.	12 \$\frac{1}{2} \frac{1}{2} \f
13	ASK RX Output	ASK detect output. Open corrector type output.	13 \$300Ω
14	ASK DET filter	ASK detect filter. Connect capacitor for reject of ASK AC component.	SIG \$50kΩ \$300Ω \$60μΑ

Continued on next page.

Continued from preceding page.


Pin No.	Pin Name	Description	Equivalent circuit
15	ASK AGC filter /AGC OFF	AGC filter pin for ASK. Please connect pull-up resistance to this pin, and do more than 4.5V at voltage of this pin.	100kΩ 100kΩ 100kΩ 10kΩ 10kΩ 10kΩ 10kΩ 10kΩ
16	ASK RX input	ASK input pin. Please connect with capacitor, 3.3V by internal biased.	ASK signal $34k\Omega$ \gtrsim 200Ω 300Ω $66k\Omega$ \geqslant 80μ A
17	Standby control	Standby control pin. FM block standby: under 0.4V DC voltage. (0 to 0.4V) FM block operate: over 2V DC voltage. (2 to 5V)	17 — 1кΩ — 30µА — 1777
18	DOC-OUT /2nd-Call input	DEMOD mode: Drop-out output pin. This pin is open collector output, so please connect pull up resistor. MOD mode: 2ND-CALL input. 2ND-CALL input: under 0.4V DC voltage. (0 to 0.4V) Normal: over 2V DC voltage. (2 to 5V)	18 30μΑ 30μΑ 300Ω
19	B-GND	Circuit GND.	
20	FM AGC filter	MOD mode: Emphasis monitor pin. DEMOD mode: FM AGC filter pin. If FM AGC no need (= AGC Off), Please set pin 12 voltage over 4.5V DC voltage. (4.5 to 5V)	AGC-DET EMP 100kΩ 100kΩ 10kΩ 500Ω 60μA
21	De-emphasis filter	DEMOD mode: De-emphasis filter pin. De-emphasis time constant must be matching at emphasis time constant. (If you don't need the emphasis, this pin is open.)	ш 100 100 100 100 100 100 100 100 100 10
22	A-GND	Circuit GND.	

Continued on next page.

Continued from preceding page.

Pin No.	Pin Name	Description	Equivalent circuit
23	De-emphasis output /V-2V select	DEMOD mode: Video signal output after De-emphasis. Output level is 0.5Vp-p. Connect capacitor to clamp input (pin 16). MOD mode: DFF control pin. DFF is ON at over 2V DC voltage. (2 to 5V)	MOD: DC IN \$200Ω DEMOD C1 \$1mA
24	Video input	MOD mode: Video signal input pin (from camera). Input level is 1Vp-p. DEMOD mode: Video signal input pin (from de-emphasis). Input level is 0.5Vp-p.	Video input MOD: 1Vp-p DEMOD: 0.5Vp-p C1 24 W 200μΑ

Test Circuit

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of February, 2009. Specifications and information herein are subject to change without notice.