

SANYO Semiconductors DATA SHEET

LC88F40H0PA/PAU LC88F40F0PA/PAU LC88F40D0PA/PAU

CMOS LSI
For Car Audio Systems

16-bit ETR Microcontroller
(ALL FLASH)

Overview

The LC88F40H0PA/PAU, LC88F40F0PA/PAU and LC88F40D0PA/PAU are 16-bit microcontrollers which are ideally suited as a system controller in car audio applications for the control of "MP3 and WMA and other compression decoders through CD/USB," "CD mechanisms and CD DSPs," "displays," and "DSP tuners." They are configured around a CPU that operates at a high speed, and incorporate an internal flash ROM (All Flash, onboard programmable) and RAM. These 16-bit microcontrollers integrate on a single chip such principal functions as on-chip debugging, 16-bit timer/counter (may be divided into 8-bit timers/counters), synchronous SIO (also used as the I²C bus interface), UART (full duplex), 12-bit PWM, 12-bit resolution (8-bit resolution selectable) × 13-channel A/D converter, and 16 vector interrupts.

Microcontroller model line-up (list of ROM and RAM sizes)

Type No.	Flash ROM (byte)	RAM (byte)
LC88F40H0PA/PAU	512K	30K
LC88F40F0PA/PAU	384K	20K
LC88F40D0PA/PAU	256K	12K

Features

- ■Power supply voltage
 - Main power supply voltage (V_{DD}CPU)
 I/O power supply (V_{DD}PORT)
 3.3V±0.3V
 V_{DD}CPU to 5.5V
 - * This product is licensed from Silicon Storage Technology, Inc. (USA), and manufactured and sold by SANYO Semiconductor Co., Ltd.
 - Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications of our customer who is considering such use and/or outside the scope of our intended standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
 - Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

SANYO Semiconductor Co., Ltd.

http://semicon.sanyo.com/en/network

- ■Flash ROM (ALL FLASH)
 - Single 3.3V power supply, on-board writeable
 - Block erase in 512 byte units
- ■Minimum instruction cycle time (Tcyc)
 - 83.3ns

■ Ports

• Normal withstand voltage I/O ports

Ports whose I/O direction can be designated in 1 bit units: 86 (P0n, P1n, P2n, P3n, P4n, P5n, P6n, P7n

PAn, PB0 to PB6, PC0, PD0 to PD5)

Dedicated pin for low-pass filter connection
 Regulator pins
 Reset pins
 1 (VREG)
 RESB)
 TEST pins
 1 (TEST)
 Dedicated pins for crystal oscillator
 2 (XT1, XT2)

• Power pins : 2 (V_{DD}CPU, V_{SS}1: Main power, I/O power supply)

: 4 (V_{DD}PORT1 to 2, V_{SS}2 to 3: I/O power supply)

: 2 (VDDPLL, VSS4: PLLVCO power)

- \blacksquare SIO: 6 channels (4 channels are also used as I²C bus.)
 - SIO0: 8 bit synchronous SIO
 - 1) LSB first/MSB first mode selectable
 - 2) Built-in 8-bit baudrate generator (4 to 512 transfer clock cycle)
 - 3) Automatic and continuous data transfer function to and from the RAM (max. 4096 bytes)
 - SIO1: 8 bit synchronous SIO
 - 1) LSB first/MSB first mode selectable
 - 2) Built-in 8-bit baudrate generator (4 to 512 transfer clock cycle)
 - 3) Automatic and continuous data transfer function to and from the RAM (max. 4096 bytes)
 - SMIIC0: Single master I²C/8-bit synchronous SIO

Mode 0: Single-master mode communication

Mode 1: Synchronous 8-bit serial I/O (MSB first)

• SMIIC1: Single master I²C/8-bit synchronous SIO

Mode 0: Single-master mode communication

Mode 1: Synchronous 8-bit serial I/O (MSB first)

• SMIIC2: Single master I²C/8-bit synchronous SIO

Mode 0: Single-master mode communication

Mode 1: Synchronous 8-bit serial I/O (MSB first)

• SMIIC3: Single master I²C/8-bit synchronous SIO

Mode 0: Single-master mode communication

Mode 1: Synchronous 8-bit serial I/O (MSB first)

■UART: 4 channels

1) Data length : 8 bits (LSB first)

2) Stop bits : 1 bit

3) Parity bits : None/even parity/odd parity

4) Transfer rate : 8 to 4096 cycle

5) Baudrate source clock: System clock/XT clock/VCO clock

5) Wakeup function

6) Full duplex communication

■Timers

- Timer 0: 16-bit timer that supports PWM/toggle outputs
 - 1) 5-bit prescaler
 - 2) 8-bit PWM × 2, 8-bit timer + 8-bit PWM mode selectable
 - 3) Clock source selectable from system clock, XT clock, VCO clock, and internal RC oscillator
- Timer 1: 16-bit timer with capture registers
 - 1) 5-bit prescaler
 - 2) May be divided into 2 channels of 8-bit timer
 - 3) Clock source selectable from system clock, XT clock, VCO clock, and internal RC oscillator
- Timer 2: 16-bit timer with capture registers
 - 1) 4-bit prescaler
 - 2) May be divided into 2 channels of 8-bit timer
 - 3) Clock source selectable from system clock, XT clock, VCO clock, and external events
- Timer 3: 16-bit timer that supports PWM/toggle outputs
 - 1) 8-bit prescaler
 - 2) 8-bit PWM × 2ch or 8-bit timer + 8-bit PWM mode selectable
 - 3) Clock source selectable from system clock, XT clock, VCO clock, and external events
- Timer 4: 16-bit timer that supports toggle outputs
 - 1) Clock source selectable from system clock and prescaler 0
- Timer 5: 16-bit timer that supports toggle outputs
 - 1) Clock source selectable from system clock and prescaler 0
- Timer 6: 16-bit timer that supports toggle outputs
 - 1) Clock source selectable from system clock and prescaler 1
- Timer 7: 16-bit timer that supports toggle outputs
 - 1) Clock source selectable from system clock and prescaler 1
 - * Prescaler 0 and 1 are consisted of 4 bits and can choose their clock source from XT clock or VCO clock.
- Timer 8
 - 1) Clock source may be selected from XT clock (32.768kHz) and frequency-divided output of clock.
 - 2) Interrupts can be generated in 8 timing schemes.
- Watch timer
 - 1) Clock may be selected from XT clock (32.768kHz)
 - 2) Interrupts can be generated in 4 timing schemes.
- ■Day, minute and second counters
 - 1) Count-up of clocks output from watch timer
 - 2) Configured with day counter, minute counter, second counter
 - 3) Continues operation when in HOLDX mode.
- ■AD converter
 - 1) 12/8 bits resolution selectable
 - 2) Analog input: 13 channels
 - 3) Comparator mode
 - 4) Automatic reference voltage generation

- ■PWM: Multifrequency 12-bit PWM × 4 channels
 - PWM0: Multifrequency 12-bit PWM × 2 channels (PWM0A and PWM0B)
 - PWM1: Multifrequency 12-bit PWM × 2 channels (PWM1A and PWM1B)
 - 1) 2-channel pairs controlled independently of one another
 - 2) Clock source selectable from system clock or VCO clock
 - 3) 8-bit prescaler: TPWMR0 = (prescaler value + 1) \times clock period
 - 4) 8-bit fundamental wave PWM generator circuit + 4-bit additional pulse generator circuit
 - 5) Fundamental wave PWM mode

Fundamental wave period: 16 TPWMR0 to 256 TPWR0

High pulse width : 0 to (Fundamental wave period - TPWMR0)

6) Fundamental wave + additional pulse mode

Fundamental wave period : 16 TPWR0 to 256 TPWR0

Overall period : Fundamental wave period × 16

High pulse width : 0 to (Overall period - TPWR0)

■Watchdog Timer: 1 channel

• Driven by the timer 8 + internal watchdog timer dedicated counter

• Interrupt or reset mode selectable

■Interrupts

- 63 sources, 16 vector addresses
 - 1) Provides three levels of multiplex interrupt control. Any interrupt requests of the level equal to or lower than the current interrupt are not accepted.
 - 2) When interrupt requests to two or more vector addresses occur at the same time, the interrupt of the highest level takes precedence over the other interrupts. For interrupts of the same level, the interrupt into the smallest vector address takes precedence.

No.	Vector Address	Interrupt Source
1	08000H	WDT (1)
2	08004H	Timer 8 (2)/Watch timer (1)
3	08008H	Timer 0 (2)
4	0800CH	INT0 (1)
5	08010H	
6	08014H	INT1 (1)
7	08018H	INT2 (1)/timer 1 (2)/UART 2 (3)
8	0801CH	INT3 (1)/timer 2 (3)/SMIIC0 (1)
9	08020H	INT4 (1)/timer 3 (2)/SMIIC1 (1)/IR Remote control receive (4)
10	08024H	INT5 (1)/timer 4 (1)/SIO1 (2)
11	08028H	
12	0802CH	PWM0 (1)/PWM1 (1)/SMIIC2 (1)
13	08030H	ADC (1)/timer 5 (1)/SMIIC3 (1)
14	08034H	INT6 (1)/timer 6 (1)/UART 3 (3)
15	08038H	INT7 (1)/timer 7 (1)/SIO0 (2)/UART 4 (3)
16	0803CH	Port 0 (3)/Port 5 (8)/UART 5 (3)

- 3 priority levels selectable.
- Of interrupts of the same level, the one with the smallest vector address takes precedence.
- A number enclosed in parentheses denotes the number of sources.
- Subroutine Stack: Entire maximum RAM space (The stack is allocated in RAM.)
 - Subroutine calls that automatically save PSW, interrupt vector calls: 6 bytes
 - Subroutine calls that do not automatically save PSW: 4 bytes
- High-speed Multiplication/division instructions
 - 16 bits \times 16 bits
 - 16 bits ÷ 16 bits
 - 32 bits ÷ 16 bits

■ Infrared remote controller receive functions

- 1) Noise rejection function
- 2) PPM(Pulse Position Modulation), compatible with Manchester and other data encoding systems.
- 3) HOLDX mode release function

■Oscillation circuits

RC oscillator circuit (internal): For system clock
 XT oscillator circuit: For system clock
 VCO oscillator circuit (internal): For system clock

■Low power consumption

• HALT mode: Halts instruction execution while allowing the peripheral circuits to continue operation.

• HOLD mode: Suspends instruction execution and the operation of the peripheral circuits.

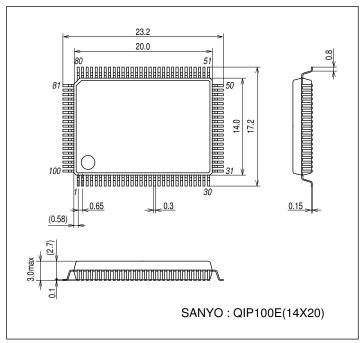
• HOLDX mode: Suspends instruction execution and operation of all the peripheral circuits except the modules run

on the XT clock.

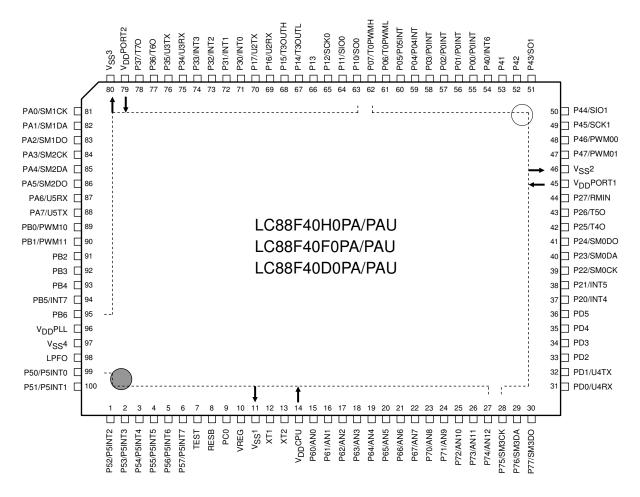
■System clock divider function

- Can run on low current.
- 1/1 to 1/128 of the system clock frequency can be set.

■Standby Function

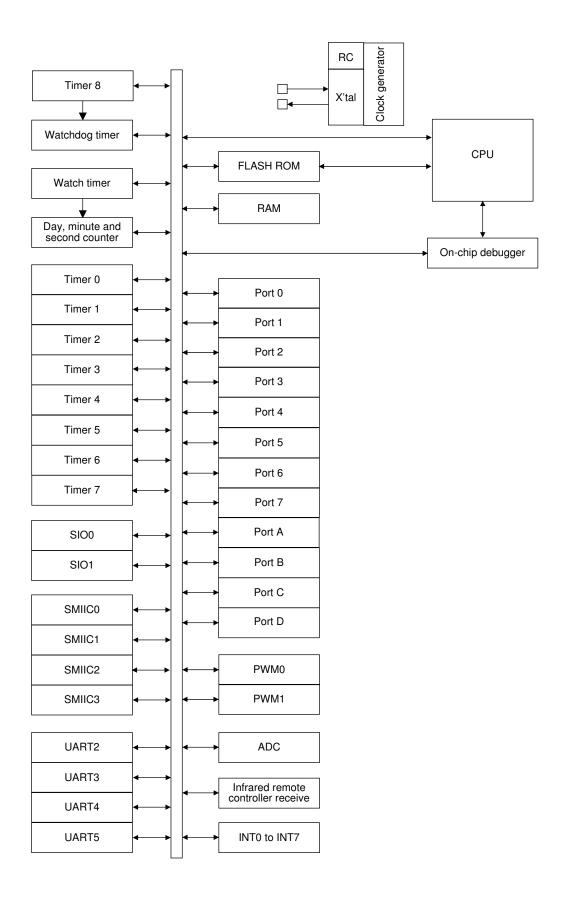

- HALT mode: Halts instruction execution while allowing the peripheral circuits to continue operation.
 - 1) Both the XT oscillator and internal RC oscillator retain the state established when the standby mode is entered.
 - 2) Both the XT and VCO clocks retain the state established when the standby mode is entered.
 - 3) There are the two ways of releasing the HALT mode.
 - (1) Generating a reset condition
 - (2) Generating an interrupt
- HOLD mode: Suspends instruction execution and the operation of the peripheral circuits.
 - 1) Both the XT oscillator and internal RC oscillator automatically stop operation.
- 2) XT clock and VCO clock oscillators automatically stop.
- 3) There are the six ways of releasing the HOLD mode.
 - (1) Generating a reset condition
 - (2) Setting at least one of the INT0, INT1, INT2, INT4, INT5, INT6, and INT7 pins to the specified level
 - (3) Having an interrupt source established at port 0
 - (4) Having an interrupt source established at port 5
 - (5) Having an interrupt request generated in UART2, UART3, UART4, or UART5
 - (6) Having an interrupt request generated in SIO0 or SIO1
- HOLDX mode: Suspends instruction execution and operation of all the peripheral circuits except the modules run
 on the XT clock.
 - 1) The internal RC oscillator automatically stops operation.
 - 2) The XT clock retains the state established when the HOLDX mode is entered and the VCO clock automatically stops.
 - 3) There are nine ways of resetting the HOLDX mode.
 - (1) Generating a reset condition
 - (2) Setting at least one of the INT0, INT1, INT2, INT4, INT5, INT6, and INT7 pins to the specified level
 - (3) Having an interrupt source established at port 0
 - (4) Having an interrupt source established at port 5
 - (5) Having an interrupt request generated in UART2, UART3, UART4, or UART5
 - (6) Having an interrupt request generated in SIO0 or SIO1
 - (7) Having an interrupt source established in the timer 8 circuit
 - (8) Having an interrupt source established in the infrared remote controller receive circuit
 - (9) Having an interrupt source established in the clock timer circuit

Reset


- External reset
- Voltage drop detection type of reset circuit (VDET circuit) incorporated
 - 1) Normal mode detection voltage: 2.85V ±0.15V
 - 2) HOLD mode detection voltage: 1.42V ±0.15V
- ■On-chip debugger function
 - Supports software debugging with the IC mounted on the target board.
 - Supports source line debugging and tracing functions, and breakpoint setting and real time monitor.
 - Single-wire communication
- ■Shipping Form
 - QIP100E (Lead free product)

Package Dimensions

unit : mm (typ) 3151A



Pin Assignment

Top view

System Block Diagram

Pin Description

Name	I/O	Description	
V _{DD} CPU	-	+ Power sources 3.3V power supply (3.0 to 3.6V)	
V _{DD} PORT1	-	+ Power sources I/O power supply (VDDCPU to 5.5V)	
V _{DD} PORT2	_	+ Power sources I/O power supply (V _{DD} CPU to 5.5V)	
V _{DD} PLL	_	+ Power sources PLLVCO power supply (3.0 to 3.6V)	
V _{SS} 1	-	- Power sources	
V _{SS} 2	-	- Power sources	
V _{SS} 3	-	- Power sources	
V _{SS} 4	-	- Power sources	
Port 0	I/O	• 8-bit I/O port	Supply voltage from
P00 to P07		I/O specifiable in 1-bit units	V _{DD} PORT1 used
		Pull-up resistors can be turned on and off in 1 bit units	(V _{DD} CPU to 5.5V)
		• Port 0 interrupt input (P00 to P05)	
		HOLD release input (P00 to P05)	
		Pin functions P06: Timer 0L output	
		P07: Timer 0H output	
Port 1	I/O	8-bit I/O port	Supply voltage from
P10 to P17	+ "	• I/O specifiable in 1-bit units	V _{DD} PORT2 used
P10 10 P17		Pull-up resistors can be turned on and off in 1 bit units	(V _{DD} CPU to 5.5V)
		• Pin functions	,
		P10: SIO0 data output	
		P11: SIO0 data input/output	
		P12: SIO0 clock input/output	
		P14: Timer 3L output	
		P15: Timer 3H output	
		P16: UART2 receive	
D+ 0	1/0	P17: UART2 transmit	Courado contra en fueras
Port 2	I/O	8-bit I/O port I/O specifiable in 1-bit units	Supply voltage from VDDPORT1 used
P20 to P27		Pull-up resistors can be turned on and off in 1 bit units	(V _{DD} CPU to 5.5V)
		• Pin functions	(*DD01 0 to 3.5*)
		P20: INT4 input/HOLD release input/timer 3 event input/timer 2L capture input/	
		timer 2H capture input	
		P21: INT5 input/HOLD release input/timer 3 event input/timer 2L capture input/	
		timer 2H capture input	
		P22: SMIIC0 clock input/output	
		P23: SMIIC0 data bus input/output	
		P24: SMIIC0 data (used in 3-wire SIO mode)	
		P25: Timer 4 output	
		P26: Timer 5 output P27: Remote control receive	
		Interrupt acknowledge type	
		INT4, INT5: H level, L level, H edge, L edge, both edges	
Port 3	I/O	8-bit I/O port	Supply voltage from
P30 to P37		• I/O specifiable in 1-bit units	V _{DD} PORT2 used
1 00 10 1 07		Pull-up resistors can be turned on and off in 1 bit units	(V _{DD} CPU to 5.5V)
		• Pin functions	
		P30: INT0 input/HOLD release input/timer 2L capture input	
		P31: INT1 input/HOLD release input/timer 2H capture input	
		P32: INT2 input/HOLD release input/timer 2 event input/timer 2L capture input	
		P33: INT3 input/HOLD release input/timer 2 event input/timer 2H capture input	
		P34: UART3 receive	
		P35: UART3 transmit	
		P36: Timer 6 output P37: Timer 7 output	
		Interrupt acknowledge type	

Continued on next page.

Continued from preceding page.

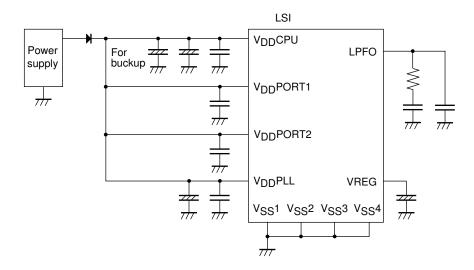
Name	I/O	Description	
Port 4	I/O	• 8-bit I/O port	Supply voltage from
P40 to P47	1	I/O specifiable in 1-bit units	V _{DD} PORT1 used
1 40 10 1 47		Pull-up resistors can be turned on and off in 1 bit units	(V _{DD} CPU to 5.5V)
		Pin functions	(66 - 1 - 1 - 1
		P40: INT6 input/HOLD release input	
		P43: SIO1 data output	
		P44: SIO1 data input/output	
		·	
		P45: SIO1 clock input/output	
		P46: PWM00 output	
		P47: PWM01 output	
		Interrupt acknowledge type	
		INT6: H level, L level, H edge, L edge, both edges	
Port 5	I/O	8-bit I/O port	Supply voltage from V _{DD} CPU
P50 to P57	1	I/O specifiable in 1-bit units	used
		Pull-up resistors can be turned on and off in 1 bit units	(3.0 to 3.6V)
		Pin functions	
		Port 5 interrupt function	
		HOLD release input	
Port 6	I/O	8-bit I/O port	Supply voltage from VDDCPU
	+ "	• I/O specifiable in 1-bit units	used
P60 to P67		·	
		Pull-up resistors can be turned on and off in 1 bit units Pin functions	(3.0 to 3.6V)
		• Pin functions	
		AN0 (P60) to AN7 (P67): AD converter input port	
Port 7	I/O	8-bit I/O port	Supply voltage from V _{DD} CPU
P70 to P77		I/O specifiable in 1-bit units	used
		Pull-up resistors can be turned on and off in 1 bit units	(3.0 to 3.6V)
		Pin functions	
		AN8 (P70) to AN12 (P74): AD converter input port	J
		P75: SMIIC3 clock input/output	Supply voltage from
		P76: SMIIC3 data bus input/output	V _{DD} PORT1 used
		P77: SMIIC3 data (used in 3-wire SIO mode)	(V _{DD} CPU to 5.5V)
Port A	I/O	8-bit I/O port	Supply voltage from
	- "	I/O specifiable in 1-bit units	V _{DD} PORT2 used
PA0 to PA7		·	
		Pull-up resistors can be turned on and off in 1 bit units Dia functions	(V _{DD} CPU to 5.5V)
		• Pin functions	
		PA0: SMIIC1 clock input/output	
		PA1: SMIIC1 data bus input/output	
		PA2: SMIIC1 data (used in 3-wire SIO mode)	
		PA3: SMIIC2 clock input/output	
		PA4: SMIIC2 data bus input/output	
		PA5: SMIIC2 data (used in 3-wire SIO mode)	
		PA6: UART5 receive	
		PA7: UART5 transmit	
Port B	I/O	• 7-bit I/O port	Supply voltage from
PB0 to PB6	†	I/O specifiable in 1-bit units	V _{DD} PORT2 used
ר אט וט קסט		Pull-up resistors can be turned on and off in 1 bit units	(V _{DD} CPU to 5.5V)
		• Pin functions	(10001 0 10 0.01)
		PB0: PWM10 output	
		PB1: PWM11 output	
		PB5: INT7 input/HOLD release input	
		Interrupt acknowledge type	
		INT7: H level, L level, H edge, L edge, both edges	
Port C	I/O	• 1-bit I/O port	Supply voltage from V _{DD} CPU
PC0	1	I/O specifiable in 1-bit units	used
		Pull-up resistors can be turned on and off in 1 bit units	(3.0 to 3.6V)
Port D	I/O	6-bit I/O port	Supply voltage from
	+ " -	I/O specifiable in 1-bit units	V _{DD} PORT1 used
PD0 to PD5			I
		Pull-up resistors can be turned on and off in 1 bit units	(V _{DD} CPU to 5.5V)
		• Pin functions	
		PD0: UART4 receive	
	1	PD1: UART4 transmit	

Continued on next page.

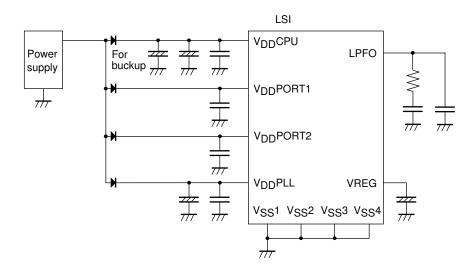
Continued from preceding page.

Name	I/O	Description
XT1	I	Input terminal for 32.768kHz X'tal oscillation
XT2	0	Output terminal for 32.768kHz X'tal oscillation
RESB	I	• Reset pin
		• This must be set to low for 50µs or longer when the power is turned on and when a reset is required.
TEST	I/O	• TEST pin
		Used to communicate with on-chip debugger
		• 100kΩ pull-down
LPFO	0	LPF connection pin for PLLVCO
VREG	0	Regulator output pin
		Connect a bypass capacitor to this pin

Port Output Types


The port output type and pull-up resistance must be set using the registers.

The pin data can be read regardless of the I/O setting of the port.


The port output type (CMOS output or N-channel open drain output) and use/disuse of the pull-up resistor can be configured separately for each port.

* Make the following connection to minimize the noise input to the V_{DD}CPU pin and prolong the backup time. Be sure to electrically short the V_{SS}1, V_{SS}2, V_{SS}3 and V_{SS}4 pins.

Example 1: When data is being backed up in the HOLD mode, the H level signals to the output ports are fed by the backup capacitors. ($V_{DD}CPU = V_{DD}PORT1 = V_{DD}PORT2 = V_{DD}PLL$)

Example 2: When data is being backed up in the HOLD mode, the H level output at any ports is not sustained and is unpredictable. ($V_{DD}CPU = V_{DD}PORT1 = V_{DD}PORT2 = V_{DD}PLL$)

Absolute Maximum Ratings at Ta = 25°C, $V_{SS}1 = V_{SS}2 = V_{SS}3 = V_{SS}4 = 0$ V

	D	Comme la a l	Applicable Pin	O a maditi a ma		Specific	ation	
	Parameter Itaximum Supply oltage Input voltage Input/Output oltage Peak output current Average output current (Note 1-1) Total output current	Symbol	/Remarks	Conditions	min	typ	max	unit
		V _{DD} max(1)	V _{DD} CPU V _{DD} PLL	V _{DD} CPU=V _{DD} PORT1 =V _{DD} PORT2=V _{DD} PLL	-0.3		+4.6	
		V _{DD} max(2)	V _{DD} PORT1 V _{DD} PORT2	V _{DD} PORT1=V _{DD} PORT2	-0.3		+6.5	
Inpu	t voltage	V _I (1)	RESB, XT1		-0.3		V _{DD} (1)+0.3	
•	•	V _{IO} (1)	Ports 5, 6 P70 to 74 Ports C XT2 VDD		V _{DD} (1)+0.3	٧		
		V _{IO} (2)	Ports 0, 1, 2, 3, 4 P75 to P77 Ports A, B, D		-0.3		V _{DD} (2)+0.3	
	•	IOPH(1)	Ports 0, 1, 2, 3, 5 Ports 6, 7, A, C, D P40 to P45 PB2 to PB6	CMOS output selected Per 1 application pin	-10			
		IOPH(2)	P46, P47 PB0, PB1	Per 1 application pin	-20			
	output current	IOMH(1)	Ports 0, 1, 2, 3, 5 Ports 6, 7, A, C, D P40 to P45 PB2 to PB6	CMOS output selected Per 1 application pin	-7.5			
ırrent		IOMH(2)	P46, P47 PB0, PB1	Per 1 application pin	-10			
utput cu	· ·	ΣIOAH(1)	Ports 5 Ports C	Total of all applicable pins	-15			mA
level o		ΣIOAH(2)	Ports 6 P70 to P74	Total of all applicable pins	-15			IIIA
High		ΣΙΟΑΗ(3)	Ports 5, 6 P70 to P74 Ports C	Total of all applicable pins	-20			
		ΣIOAH(4)	Ports 2, D P75 to P77	Total of all applicable pins	-25			
		ΣΙΟΑΗ(5)	Ports 0, 4	Total of all applicable pins	-25			
		ΣΙΟΑΗ(6)	Ports 0, 2, 4, D P75 to P77	Total of all applicable pins	-45			
		ΣΙΟΑΗ(7)	Ports 1, 3	Total of all applicable pins	-25			
		ΣΙΟΑΗ(8)	Ports A, B	Total of all applicable pins	-25			
		ΣΙΟΑΗ(9)	Ports 1, 3, A, B	Total of all applicable pins	-45			

Note 1-1: Average output current is average of current in 100ms interval.

Continued on next page.

Continued from preceding page.

	Parameter	Symbol	Applicable Pin	Conditions		Specificat	ion	
	T drameter	Cymbol	/Remarks	Conditions	min	typ	max	unit
	Peak output current	IOPL(1)	Ports 0, 1, 3 Ports 4, 5, 6 Ports B, C, D P20, P21 P24 to P27 P70 to P74, P77 PA2, PA5 to PA7	Per 1 application pin.			20	
		IOPL(2)	P22, P23 P75, P76 PA0, PA1 PA3, PA4	Per 1 application pin.			25	
t current	Average output current (Note 1-1)	IOML(1)	Ports 0, 1, 3 Ports 4, 5, 6 Ports B, C, D P20, P21 P24 to P27 P70 to P74, P77 PA2, PA5 to PA7	Per 1 application pin.			10	
Low level output current		IOML(2)	P22, P23 P75, P76 PA0, PA1 PA3, PA4	Per 1 application pin.			15	mA
ן ר	Total output current	ΣIOAL(1)	Ports 5 Ports C	Total of all applicable pins			15	
		ΣIOAL(2)	Ports 6 P70 to P74	Total of all applicable pins			15	
		ΣIOAL(3)	Ports 5, 6 P70 to P74 Ports C	Total of all applicable pins			20	
		ΣIOAL(4)	Ports 2, D P75 to P77	Total of all applicable pins			25	
		ΣIOAL(5)	Ports 0, 4	Total of all applicable pins			25	
		ΣIOAL(6)	Ports 0, 2, 4, D P75 to P77	Total of all applicable pins			45	
		ΣIOAL(7)	Ports 1, 3	Total of all applicable pins			25	
		ΣIOAL(8)	Ports A, B	Total of all applicable pins			25	
		ΣIOAL(9)	Ports 1, 3, A, B	Total of all applicable pins			45	
	wable power	Pd max	QIP100E	Ta = -40 to +85°C			400	mW
Оре	erating perature range	Topr			-40		+85	°C
Sto	rage perature range	Tstg			-45		+125	°C

Note 1-1: Average output current is average of current in 100ms interval.

Allowable Operating Conditions at Ta = -40 °C to +85 °C, $V_{SS}1 = V_{SS}2 = V_{SS}3 = V_{SS}4 = 0$ V

Parameter	Symbol	Applicable Pin	Conditions		Specific	cation	
Farameter	Symbol	/Remarks	Conditions	min	typ	max	unit
Operating	V _{DD} (1)	V _{DD} CPU=V _{DD} PLL		3.0		3.6	
supply voltage	V _{DD} (2)	V _{DD} PORT1 V _{DD} PORT2		V _{DD} (1)		5.5	
Memory sustaining supply voltage	VHD	V _{DD} CPU=V _{DD} PORT1 =V _{DD} PORT2=V _{DD} PLL	RAM and register contents in HOLD mode.	1.2			
High level input voltage	V _{IH} (1)	Ports 0, 1, 2, 3, 4 P75 to P77 Ports A, B, D	V _{DD} PORT=V _{DD} (2)	0.3×V _{DD} (2) +0.7		V _{DD} (2)	
	V _{IH} (2)	Ports 5, 6, C P70 to P74	V _{DD} CPU=V _{DD} (1)	0.3×V _{DD} (1) +0.7		V _{DD} (1)	
	V _{IH} (3)	RESB	$V_{DD}CPU=V_{DD}(1)$	0.75×V _{DD} (1)		V _{DD} (1)	
	V _{IH} (4)	P22, P23, P75, P76 PA0, PA1, PA3, PA4 I ² C side	V _{DD} PORT=V _{DD} (2)	0.7×V _{DD} (2)		V _{DD} (2)	V
Low level input voltage	V _{IL} (1)	Ports 0, 1, 2, 3, 4 P75 to P77 Ports A, B, D	V _{DD} PORT=V _{DD} (2)	V _{SS}		0.1×V _{DD} (2) +0.4	
supply voltage High level input voltage Low level input voltage nstruction cycle ime Supply voltage rise ime	V _{IL} (2)	Ports 5, 6, C P70 to P74	V _{DD} CPU=V _{DD} (1)	V _{SS}		0.1×V _{DD} (1) +0.4	
	V _{IL} (3)	RESB	$V_{DD}CPU=V_{DD}(1)$	V _{SS}		0.25×V _{DD} (1)	
	V _{IL} (4)	P22, P23, P75, P76 PA0, PA1, PA3, PA4 I ² C side	V _{DD} PORT=V _{DD} (2)	V _{SS}		0.3×V _{DD} (2)	
Instruction cycle time	tCYC		V _{DD} CPU=V _{DD} (1)	83.3			μs
Supply voltage rise time	Tpup	V _{DD} CPU		1		100	ms
Oscillation	FmRC		Internal RC oscillation	0.5	1.0	2.0	MHz
frequency range	FmX'tal	XT1, XT2	32.768kHz crystal oscillation.		32.768		kHz

Electrical Characteristics at Ta = -40 °C to +85 °C, $V_{SS}1 = V_{SS}2 = V_{SS}3 = V_{SS}4 = 0V$

Parameter	Symbol	Applicable Pin	Conditions			Specific	ation	
. a.amoto	5,111501	/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
High level input current	I _{IH} (1)	Ports 0, 1, 2, 3, 4 P75 to P77 Ports A, B, D	Output disable Pull-up resistor OFF V _{IN} =V _{DD} (2) (including the off-leak current of the output Tr.)	V _{DD} PORT= V _{DD} (1) to 5.5			1	
	I _{IH} (2)	Ports 5, 6, C P70 to P74 RESB	Output disable Pull-up resistor OFF V _{IN} =V _{DD} (1) (including the off-leak current of the output Tr.)	V _{DD} CPU= 3.0 to 3.6			1	
	I _{IH} (3)	XT1	V _{IN} =V _{DD} (1)	V _{DD} CPU= 3.0 to 3.6		0.18		_
Low level input current	I _{IL} (1)	Ports 0, 1, 2, 3, 4 P75 to P77 Ports A, B, D	Output disable Pull-up resistor OFF VIN=VSS (including the off-leak current of the output Tr.)	V _{DD} PORT= V _{DD} (1) to 5.5	-1			μΑ
	P	Ports 5, 6, C P70 to P74 RESB	Output disable Pull-up resistor OFF VIN=VSS (including the off-leak current of the output Tr.)	V _{DD} CPU= 3.0 to 3.6	-1			
	I _{IL} (3)	XT1	V _{IN} =V _{SS}	V _{DD} CPU= 3.0 to 3.6		-0.18		
High level output voltage	V _{OH} (1)	Ports 0, 1, 2, 3 P40 to P45	I _{OH} =-1.0mA, V _{DD} (2)	V _{DD} PORT= 4.5 to 5.5	V _{DD} (2) -1.0			
Ü	V _{OH} (2)	P75 to P77 Ports A, D PB2 to PB6	I _{OH} =-0.4mA, V _{DD} (2)	$V_{DD}PORT = V_{DD}(1)$ to 5.5	V _{DD} (2) -0.4			
	V _{OH} (3)	Ports 5, 6, C P70 to P74	I _{OH} =-1.0mA, V _{DD} (1)	V _{DD} CPU= 3.0 to 3.6	V _{DD} (1) -1.0			
	V _{OH} (4)		I _{OH} =-0.4mA, V _{DD} (1)	V _{DD} CPU= 3.0 to 3.6	V _{DD} (1) -0.4			
	V _{OH} (5)	P46, P47 PB0, PB1	I _{OH} =-10mA, V _{DD} (2)	V _{DD} PORT= 4.5 to 5.5	V _{DD} (2) -1.5			
	V _{OH} (6)		I _{OH} =-1.6mA, V _{DD} (2)	V _{DD} PORT= V _{DD} (1) to 5.5	V _{DD} (2) -0.4			V
Low level output voltage	V _{OL} (1)	Ports 0, 1, 3, 4 P20, P21	I _{OL} =10mA	V _{DD} PORT= 4.5 to 5.5			1.5	
	V _{OL} (2)	P24 to P27, P77 PA2, PA5 to PA7 Ports B, D	I _{OL} =1.6mA	V _{DD} PORT= V _{DD} (1) to 5.5			0.4	
	V _{OL} (3)	Ports 5, 6, C P70 to P74	I _{OL} =1.6mA	V _{DD} CPU= 3.0 to 3.6			0.4	
	V _{OL} (4)	P22, P23 P75, P76	I _{OL} =11mA	V _{DD} PORT= 4.5 to 5.5			1.5	
	V _{OL} (5)	PA0, PA1 PA3, PA4	I _{OL} =3.0mA	V _{DD} PORT= V _{DD} (1) to 5.5			0.4	
Pull-up resistor	Rpu(1)	Ports 0, 1, 2, 3, 4 P75 to P77	V _{OH} =0.9V _{DD}	V _{DD} PORT= 4.5 to 5.5	15	35	80	
	Rpu(2)	Ports A, B, D		$V_{DD}PORT = V_{DD}(1)$ to 5.5	15	35	150	kΩ
	Rpu(3)	Ports 5, 6, C P70 to P74		V _{DD} CPU= 3.0 to 3.6	15	35	150	
Hysteresis voltage	VHYS	RESB Ports 1, 2, 3, 4, 5 Ports 7, A, B, C, D	Ports 1 to 5, 7, A to D PnFSAn=1	5.5.50		0.1V _{DD}		V

Continued on next page.

Continued from preceding page.

Parameter	Symbol	Applicable Pin /Remarks	Conditions		Specification				
Parameter	Symbol			V _{DD} [V]	min	typ	max	unit	
Pin capacitance	CP	All pins	For pins other than that under test: V _{IN} =V _{SS} f=1MHz Ta=25℃			10		pF	
Low voltage circuit	VDET(1)	V _{DD} CPU	On low voltage detection circuit Excluding the HOLD mode		2.7	2.85	3.0	٧	
detection voltage	VDET(2)	V _{DD} CPU	On low voltage detection circuit HOLD mode		1.27	1.42	1.57	V	

Serial I/O Characteristics at Ta = -40°C to +85°C, $V_{SS}1 = V_{SS}2 = V_{SS}3 = V_{SS}4 = 0V$

1. SIO0, SIO1 Serial I/O Characteristics (Wakeup Function Disabled) (Note 4-1-1)

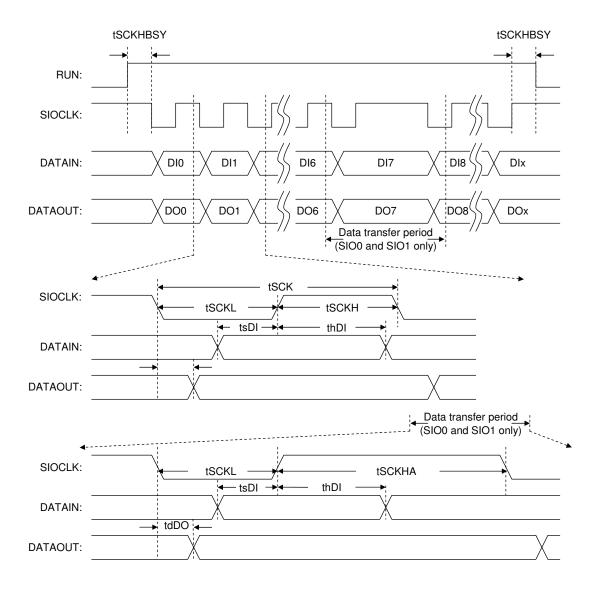
	Ps	arameter	Symbol	Applicable Pin	Conditions			Specifi	cation	
			Cymbol	/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
		Period	tSCK(1)	SCK0(P12) SCK1(P45)	• See Fig. 1.		4			
		Low level pulse width	tSCKL(1)				2			
	SC X	High level pulse width	tSCKH(1)				2			
	Input clock		tSCKHA(1)		Automatic communication mode See Fig. 1.	V _{DD} PORT= V _{DD} (1) to 5.5	6			tCYC
			tSCKHBSY (1a)		Automatic communication mode See Fig. 1.]	23			
×			tSCKHBSY (1b)		Modes other than automatic communication mode See Fig. 1.		4			
Serial clock		Period	tSCK(2)	SCK0(P12) SCK1(P45)	CMOS output selected See Fig. 1.		4			
Se		Low level pulse width	tSCKL(2)					1/2		tSCK
	×	High level pulse width	tSCKH(2)]		1/2		took
	Output clock		tSCKHA(2)		Automatic communication modeCMOS output selectedSee Fig. 1.	$V_{DD}PORT = V_{DD}(1) \text{ to 5.5}$	6			
			tSCKHBSY (2a)		Automatic communication modeCMOS output selectedSee Fig. 1.		4		23	tCYC
			tSCKHBSY (2b)		 Modes other than automatic communication mode See Fig. 1. 		4			
input	Da	ta setup time	tsDI(1)	SIO0(P11), SIO1(P44)	 Specified with respect to rising edge of SIOCLK See fig. 1. 	V _{DD} PORT=	0.03			
Serial input	Da	ta hold time	thDI(1)			V _{DD} (1) to 5.5	0.03			
utput	Input clock	Output delay time			• (Note 4-1-2)	V _{DD} PORT=			1tCYC +0.05	μs
Serial output	Output clock		tdD0(2)		• (Note 4-1-2)	V _{DD} (1) to 5.5			1tCYC +0.05	

Note 4-1-1: These specifications are theoretical values. Add margin depending on its use.

Note 4-1-2: Specified with respect to falling edge of SIOCLK. Specified as the time to the beginning of output state change in open drain output mode. See Fig. 1.

2. SIO0, SIO1 Serial Input/Output Characteristics (Wakeup Function Enabled) (Note 4-2-1)

			Committee of	Applicable Pin	0		, (Specifi	ication	
	Pa	arameter	Symbol	/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
		Period	Period tSCK(3) SCK0(P12) • See Fig. 1. SCK1(P45) • See Fig. 1.			2				
Serial clock	Input clock	Low level pulse width	tSCKL(3)			V _{DD} PORT=	1			tCYC
Seri	Inpu	High level pulse width	tSCKH(3)			V _{DD} (1) to 5.5	1			
			tSCKHBSY(3)				2			
input	Da	ta setup time	tsDI(2)	SIO0(P11), SIO1(P44)	Specified with respect to rising edge of SIOCLK See fig. 1.	V _{DD} PORT=	0.03			
Serial	Serial input Dat	ta hold time	thDI(2)			V _{DD} (1) to 5.5	0.03			
Serial output	Input clock	Output delay time	tdD0(3)	SO0(P10), SO1(P43), SIO0(P11), SIO1(P44)	• (Note 4-2-2)	V _{DD} PORT= V _{DD} (1) to 5.5			1tCYC +0.05	μs


Note 4-2-1: These specifications are theoretical values. Add margin depending on its use.

Note 4-2-2: Specified with respect to falling edge of SIOCLK. Specified as the time to the beginning of output state change in open drain output mode. See Fig. 1.

3. SMIIC0 to SMIIC3 Simple SIO Mode Input/Output Characteristics

	р.		Oal	Applicable Pin	O and this are			Specif	ication	
	Parameter Period		Symbol	/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
	×	Period	tSCK(4)	SM0CK(P22) SM1CK(PA0)	• See Fig. 1.		4			
	Input clock	Low level pulse width	tSCKL(4)	SM2CK(PA3) SM3CK(P75)		$V_{DD}PORT = V_{DD}(1)$ to 5.5	2			tCYC
Serial clock	ll	High level pulse width	tSCKH(4)				2			icyc
Serial	ck	Period	tSCK(5)	SM0CK(P22) SM1CK(PA0)	CMOS output selected See Fig. 1.		8			
	Output clock	Low level pulse width	tSCKL(5)	SM2CK(PA3) SM3CK(P75)		$V_{DD}PORT = V_{DD}(1)$ to 5.5		1/2		tSCK
	Õ	High level pulse width	tSCKH(5)					1/2		ISON
Serial input	Da	ta setup time	tsDI(3)	SM0DA(P23) SM1DA(PA1) SM2DA(PA4)	Specified with respect to rising edge of SIOCLK See fig. 1.	V _{DD} PORT=	0.03			
Serial	Da	ta hold time	thDI(3)	SM3DA(P76)		V _{DD} (1) to 5.5	0.03			
Serial output	Ou tim	tput delay ie	tdD0(4)	SM0DO(P24) SM0D1(PA2) SM0D2(PA5) SM0D3(P77) SM0DA(P23) SM1DA(PA1) SM2DA(PA4) SM3DA(P76)	Specified with respect to falling edge of SIOCLK Specified as interval up to time when output state starts changing. See Fig. 1.	V _{DD} PORT= V _{DD} (1) to 5.5			1tCYC +0.05	μs

Note 4-5-1: These specifications are theoretical values. Add margin depending on its use.

^{*} Remarks: DIx and DOx denote the last bits communicated; x = 0 to 32768

Figure 1 Serial I/O Waveforms

4. SMIIC0 to SMIIC3 I²C Mode Input/Output Characteristics

Parameter Period			Symbol	Applicable Pin	Conditions		1	Specif	ication	1	
		1		,	/Remarks		V _{DD} [V]	min	typ	max	unit
	쑹	Period		tSCL	SM0CK(P22) SM1CK(PA0)	• See Fig. 2.		5			
	Input clock	Low level		tSCLL	SM2CK(PA3) SM3CK(P75)		$V_{DD}PORT = V_{DD}(1)$ to 5.5	2.5			T4:14
clock	드	High level		tSCLH				2			Tfilt
Serial clock	쑹	Period		tSCLx	SM0CK(P22) SM1CK(PA0)	Specified as interval up to time when output state starts changing.		10			
	Output clock	Low leve		tSCLLx	SM2CK(PA3) SM3CK(P75)		V _{DD} PORT= V _{DD} (1) to 5.5		1/2	•	
1 11191		High level		tSCLHx					1/2		tSCI
pir	ns inp	and SM0D <i>I</i> but spike ssion time	A	tsp	SM0CK(P22) SM1CK(PA0) SM2CK(PA3) SM3CK(P75) SM0DA(P23) SM1DA(PA1) SM2DA(PA4) SM3DA(P76)	• See fig. 2.				1	Tfilt
tim	e be	ease tween id stop	Input	tBUF	SM0CK(P22) SM1CK(PA0) SM2CK(PA3)	• See fig. 2.		2.5			
			Output	tBUFx	- SM3CK(P75) SM0DA(P23) SM1DA(PA1) SM2DA(PA4)	Standard-mode Specified as interval up to time when output state starts changing. Fast-mode	$V_{DD}PORT = V_{DD}(1)$ to 5.5	5.5			μs
)		SM3DA(P76)	Specified as interval up to time when output state starts changing.		1.6			
	nditio	start on hold	Input	tHD; STA	SM0CK(P22) SM1CK(PA0) SM2CK(PA3)	When SMIIC register control bit, I2CSHDS=0 See fig. 2.		2.0			Tfilt
			п		SM3CK(P75) SM0DA(P23) SM1DA(PA1)	When SMIIC register control bit, I2CSHDS=1 See fig. 2.	V _{DD} PORT=	2.5			1111
			Output	tHD; STAx	SM2DA(PA4) SM3DA(P76)	Standard-mode Specified as interval up to time when output state starts changing.	V _{DD} (1) to 5.5	4.1			μs
			ПО			Fast-mode Specified as interval up to time when output state starts changing.		1.0			μο
_		on setup	Input	tSU; STA	SM0CK(P22) SM1CK(PA0) SM2CK(PA3)	• See fig. 2.		1.0			Tfilt
			Output	tSU; STAx	SM3CK(P75) SM0DA(P23) SM1DA(PA1)	Standard-mode Specified as interval up to time when output state starts changing.	$V_{DD}PORT = V_{DD}(1) \text{ to 5.5}$	5.5			μs
			nO		SM2DA(PA4) SM3DA(P76)	Fast-mode Specified as interval up to time when output state starts changing.		1.6			μδ
	op co tup ti	ondition me	Input	tSU; STO	SM0CK(P22) SM1CK(PA0) SM2CK(PA3)	• See fig. 2.		1.0			Tfilt
			Output	tSU; STOx	SM3CK(P75) SM0DA(P23) SM1DA(PA1)	Standard-mode Specified as interval up to time when output state starts changing.	$V_{DD}PORT = V_{DD}(1) \text{ to 5.5}$	4.9			
			Out		SM2DA(PA4) SM3DA(P76)	Fast-mode Specified as interval up to time when output state starts changing.		1.1			μs

Note 4-6-1: These specifications are theoretical values. Add margin depending on its use.

Continued on next page.

Continued from preceding page.

Parameter		Symbol	Applicable Pin	Conditions			Specifi	cation	
Farameter		Symbol	/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Data hold time	Input	tHD; DAT	SM0CK(P22) SM1CK(PA0) SM2CK(PA3) SM3CK(P75)	• See fig. 2.	V _{DD} PORT=	0			
	Output	tHD; DATx	SM0DA(P23) SM1DA(PA1) SM2DA(PA4) SM3DA(P76)	Specified as interval up to time when output state starts changing.	V _{DD} (1) to 5.5	1		1.5	Tfilt
Data setup time	Input	tSU; DAT	SM0CK(P22) SM1CK(PA0) SM2CK(PA3) SM3CK(P75)	• See fig. 2.	- V _{DD} PORT=	1			
	Output	tSU; DATx	SM0DA(P23) SM1DA(PA1) SM2DA(PA4) SM3DA(P76)	Specified as interval up to time when output state starts changing.	V _{DD} (1) to 5.5	1tSCL -1.5Tfilt			Tfilt
Fall time	Input	tF	SM0CK(P22) SM1CK(PA0) SM2CK(PA3)	• See fig. 2.	V _{DD} PORT= V _{DD} (1) to 5.5			300	
		tF	SM3CK(P75) SM0DA(P23)	When SMIIC register control bits, PSLW=1, P5V=1	V _{DD} PORT=5	20+0.1Cb		250	
	Output		SM1DA(PA1) SM2DA(PA4)	When SMIIC register control bits, PSLW=1, P5V=0	V _{DD} PORT=3	20+0.1Cb		250	ns
	0		SM3DA(P76)	When SMIIC register control bits, PSLW=0 Cb ≤ 400pF	V _{DD} PORT= V _{DD} (1) to 5.5			100	

Note 4-6-1: These specifications are theoretical values. Add margin depending on its use.

 $Note \ 4-6-2: The \ value \ of \ Tfilt \ is \ determined \ by \ the \ values \ of \ the \ register \ SMICnBRG \ (n=0,\ 1,\ 2,\ 3), \ bits \ 7 \ and \ 6 \ (BRP1,\ 1,\ 2,\ 3), \ bits \ 7 \ and \ 6 \ (BRP1,\ 1,\ 2,\ 3), \ bits \ 7 \ and \ 6 \ (BRP1,\ 1,\ 2,\ 3), \ bits \ 7 \ and \ 6 \ (BRP1,\ 1,\ 2,\ 3), \ bits \ 7 \ and \ 6 \ (BRP1,\ 1,\ 2,\ 3), \ bits \ 7 \ and \ 6 \ (BRP1,\ 1,\ 2,\ 3), \ bits \ 7 \ and \ 6 \ (BRP1,\ 1,\ 2,\ 3), \ bits \ 7 \ and \ 6 \ (BRP1,\ 1,\ 2,\ 3), \ bits \ 7 \ and \ 6 \ (BRP1,\ 1,\ 2,\ 3), \ bits \ 7 \ and \ 6 \ (BRP1,\ 1,\ 2,\ 3), \ bits \ 7 \ and \ 6 \ (BRP1,\ 1,\ 2,\ 3), \ bits \ 7 \ and \ 6 \ (BRP1,\ 1,\ 2,\ 3), \ bits \ 7 \ and \ 6 \ (BRP1,\ 1,\ 2,\ 3), \ bits \ 9 \ and \ 9 \ a$

BRP0) and the system clock frequency.

<i>y</i>	1	
BRP1	BRP0	Tfilt
0	0	tCYC × 1
0	1	tCYC × 2
1	0	tCYC × 3
1	1	tCYC × 4

Set bits (BPR1, BPR0) so that the value of Tfilt falls between the following range:

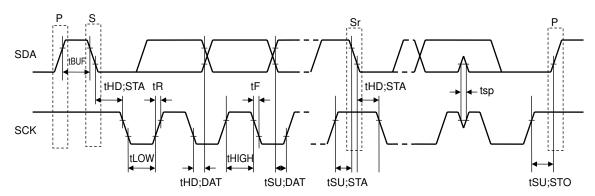
 $250 \text{ns} \ge \text{Tfilt} > 140 \text{ns}$

Note 4-6-3: Cb represents the total loads (in pF) connected to the bus pins. $Cb \le 400 pF$

Note 4-6-4: The standard-mode refers to a mode that is entered by configuring SMICnBRG (n=0, 1, 2, 3) as follows:

 $250 \text{ns} \ge \text{Tfilt} > 140 \text{ns}$

BRDQ (bit5) = 1


SCL frequency setting ≤ 100kHz

The fast-mode refers to a mode that is entered by configuring SMICnBRG (n=0, 1, 2, 3) as follows:

250ns \geq Tfilt > 140ns

BRDQ (bit5) = 0

SCL frequency setting ≤ 400kHz

S: Start condition

P: Stop condition

Sr: Restart condition

Figure 2 I²C Timing

5. UART2 to UART5 Operating Conditions at Ta = -40 °C to +85 °C, $V_{SS}1 = V_{SS}2 = V_{SS}3 = V_{SS}4 = 0V$

Deremeter	Symbol	Applicable Pin	Applicable Pin Conditions			Specif	ication	
Parameter	Syllibol	/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Transfer rate	UBR	U2RX(P16),						
		U3RX(P34),						
		U4RX(PD0),	v	V _{DD} PORT= V _{DD} (1) to 5.5	8		4096	
		U5RX(PA6),						tBGCYC
		U2TX(P17),		V _{DD} (1) to 5.5	0		4090	IBGCTC
		U3TX(P35),						
		U4TX(PD1),						
		U5TX(PA7)						

Note 4-7: tBGCYC denotes one cycle of the baudrate clock source.

Pulse Input Conditions at Ta = -40 °C to +85 °C, $V_{SS}1 = V_{SS}2 = V_{SS}3 = V_{SS}4 = 0V$

Davamatar	Symbol	Applicable Pin	Conditions			Specif	ication	
Parameter	Symbol	/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
High/low level minimum pulse width	tPIH(1) tPIL(1)	INT0(P30), INT1(P31), INT2(P32), INT3(P33), INT4(P20), INT5(P21), INT6(P40), INT7(PB5)	Interrupt source flag can be set. Event inputs for timers 2 and 3 are enabled.	V _{DD} PORT= V _{DD} (1) to 5.5	2			tCYC
	tPIL(2)	RESB	Can be reset via the external reset pin. (Note 5-1)	V _{DD} CPU= 3.0 to 3.6	50			μs
	tPIL(3)	V _{DD} CPU	Can be reset by the low voltage detection circuit. (Note 5-1)	(Note 5-2)	50			μs

Note 5-1: This parameter specifies the time required to ensure that the reset sequence is carried out without fail. The reset may be applied even if this time specification is not satisfied.

Note 5-2: (VDDCPU voltage) ≤ (Low voltage circuit detection voltage)

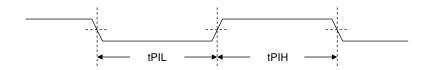


Figure 3 Pulse Input Timing Signal Waveform

AD Converter Characteristics at Ta = -40°C to +85°C, $V_{SS}1 = V_{SS}2 = V_{SS}3 = V_{SS}4 = 0$ V

1. 12-bit AD Conversion Mode

Devemeter	Cumbal	Applicable Pin	Conditions			Specifica	ation	
Parameter	Symbol	/Remarks	Conditions	V _{DD} CPU[V]	min	typ	max	unit
Resolution	NAD	AN0(P60)		3.0 to 3.6		12		bit
Absolute accuracy	ETAD	to AN7(P67),	(Note 6-1)	3.0 to 3.6			±16	LSB
Conversion time	TCAD12	AN8(P70) to AN12(P74)	Conversion time calculated	3.0 to 3.6	102			μs
Analog input voltage range	VAIN	10 AN 12(F74)		3.0 to 3.6	V _{SS}		V _{DD} CPU	V
Analog port	IAINH		VAIN=V _{DD} CPU	3.0 to 3.6			1	
input current	IAINL		VAIN=V _{SS}	3.0 to 3.6	-1			μΑ

Conversion time calculation formula: TCAD12= ((52/(AD division ratio))+2) × tCYC

2. 8-bit AD Conversion Mode

Parameter	Symbol	Applicable Pin	Conditions			Specifica	ation	
Parameter	Symbol	/Remarks	Conditions	V _{DD} CPU[V]	min	typ	max	unit
Resolution	NAD	AN0(P60)		3.0 to 3.6		8		bit
Absolute accuracy	ETAD	to AN7(P67),	(Note 6-1)	3.0 to 3.6			±1.5	LSB
Conversion time	TCAD8	AN8(P70) to AN12(P74)	Conversion time calculated	3.0 to 3.6	32			μs
Analog input voltage range	VAIN	10 AN12(P74)		3.0 to 3.6	V _{SS}		V _{DD} CPU	V
Analog port	IAINH		VAIN=V _{DD} CPU	3.0 to 3.6			1	
input current	IAINL		VAIN=V _{SS}	3.0 to 3.6	-1			μΑ

Conversion time calculation formula: $TCAD8 = ((32/(AD \text{ division ratio})) + 2) \times tCYC$

Note 6-1: The quantization error ($\pm 1/2$ LSB) is excluded from the absolute accuracy.

Note 6-2: The conversion time refers to the interval from the time a conversion starting instruction is issued till the time the complete digital value against the analog input value is loaded in the result register.

The conversion time is twice the normal value when one of the following conditions occurs:

- The first AD conversion is executed in the 12-bit AD conversion mode after a system reset.
- The first AD conversion is executed after the AD conversion mode is switched from 8-bit to 12-bit AD conversion mode.

Consumption Current Characteristics at Ta = -40 °C to +85 °C, $V_{SS}1 = V_{SS}2 = V_{SS}3 = V_{SS}4 = 0V$

	0 . 1 . 1	Applicable Pin	0 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	1332 1	332 1	Specific	cation	
Parameter	Symbol	/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Normal mode consumption current (Note 7-1)	IDDOP(1)	V _{DD} CPU =V _{DD} PORT1 =V _{DD} PORT2 =V _{DD} PLL	FmX'tal=32.768kHz crystal oscillation mode System clock set to VCO (12MHz) Internal RC oscillation stopped 1/1 frequency division mode	3.0 to 3.6		10	15	
	IDDOP(2)		FmX'tal=32.768kHz crystal oscillation mode System clock set to VCO (8MHz) Internal RC oscillation stopped 1/1 frequency division mode	3.0 to 3.6		8	12	mA
	IDDOP(3)		FmX'tal=32.768kHz crystal oscillation mode System clock set to VCO (4MHz) Internal RC oscillation stopped 1/1 frequency division mode	3.0 to 3.6		6	9	
	IDDOP(4)		FmX'tal=0kHz (oscillation stopped) System clock set to internal RC oscillation 1/1 frequency division mode	3.0 to 3.6		3.5	5	
	IDDOP(5)		FmX'tal=32.768kHz crystal oscillation mode System clock set to 32.768kHz Internal RC oscillation stopped 1/1 frequency division mode	3.0 to 3.6		35	150	μА
HALT mode consumption current (Note 7-1)	IDDHALT(1)	V _{DD} CPU =V _{DD} PORT1 =V _{DD} PORT2 =V _{DD} PLL	HALT mode • FmX'tal=32.768kHz crystal oscillation mode • System clock set to VCO (12MHz) • Internal RC oscillation stopped • 1/1 frequency division mode	3.0 to 3.6		3.5	5	
	IDDHALT(2)		HALT mode • FmX'tal=32.768kHz crystal oscillation mode • System clock set to VCO (8MHz) • Internal RC oscillation stopped • 1/1 frequency division mode	3.0 to 3.6		2.5	4	mA
	IDDHALT(3)		HALT mode • FmX'tal=32.768kHz crystal oscillation mode • System clock set to VCO (4MHz) • Internal RC oscillation stopped • 1/1 frequency division mode	3.0 to 3.6		1.5	3	
	IDDHALT(4)		HALT mode • FmX'tal=0kHz (oscillation stopped) • System clock set to internal RC oscillation • 1/1 frequency division mode	3.0 to 3.6		0.2	1	
	IDDHALT(5)		HALT mode • FmX'tal=32.768kHz crystal oscillation mode • System clock set to 32.768kHz • Internal RC oscillation stopped • 1/1 frequency division mode	3.0 to 3.6		15	100	
HOLD mode consumption current	IDDHOLD(1)	V _{DD} CPU	HOLD mode	3.0 to 3.6		1	30	μΑ
HOLDX mode consumption current	IDDHOLD(2)	V _{DD} CPU	HOLDX mode • FmX'tal=32.768kHz crystal oscillation mode	3.0 to 3.6		15	50	

Note 7-1: The consumption current value includes none of the currents that flow into the output transistor and internal pull-up resistors.

F-ROM Programming Characteristics at $Ta = +10^{\circ}C$ to $+55^{\circ}C$, $V_{SS}1 = V_{SS}2 = V_{SS}3 = V_{SS}4 = 0V$

Parameter	Symbol	Applicable Pin	Conditions			Specific	cation	
Farameter	Symbol	/Remarks	Conditions	V _{DD} CPU[V]	min	typ	max	unit
Onboard programming current	I _{DD} FW(1)	V _{DD} CPU	Microcontroller erase consumption current is excluded.	3.0 to 3.6		10	20	mA
Onboard	tFW(1)		512-byte erase operation	3.0 to 3.6		20	30	ms
programming time	tFW(2)		2-byte programming operation	3.0 to 3.6		40	60	μs

Power Pin Treatment Condition 1 (VDDCPU, VSS1)

Connect capacitors that meet the following conditions between the V_{DD}1 and V_{SS}1 pins:

- Connect among the V_{DD}CPU and V_{SS}1 pins and the capacitors C1 and C2 with the shortest possible lead wires, of the same length (L1=L1', L2=L2') wherever possible.
- Connect a large-capacity capacitor C1 and a small-capacity capacitor C2 in parallel.
- The capacitance of C2 should be approximately 0.1µF or larger.
- Please mount a suitable capacitor about C1.
- \bullet The $V_{DD}CPU$ and $V_{SS}1$ traces must be thicker than the other traces.

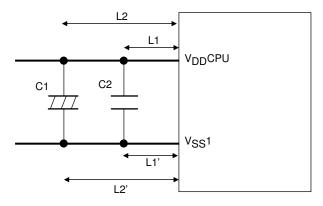


Figure 4

Power Pin Treatment Condition 2 (VDDPORT1 to 2, VSS2 to 3)

Connect capacitors that meet the following conditions between the VDDPORT1 to VSS2 and VDDPORT2 to VSS3 pins:

- Connect among the VDDPORT1 to 2 and VSS2 to 3 pins and the capacitor C3 with the shortest possible lead wires, of the same length (L3=L3') wherever possible.
- The capacitance of C3 should be approximately 0.1µF or larger.
- The VDDPORT1 to 2 and VSS2 to 3 traces must be thicker than the other traces.

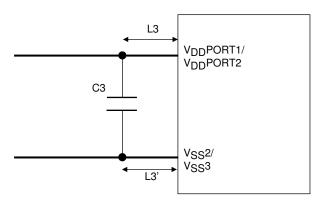


Figure 5

Power Pin Treatment Condition 3 (VDDPLL, VSS4)

Connect capacitors that meet the following conditions between the V_{DD}PLL and V_{SS}4 pins:

- Connect among the V_{DD}PLL and V_{SS}4 pins and the capacitors C4 and C5 with the shortest possible lead wires, of the same length (L4=L4', L5=L5') wherever possible.
- Connect a large-capacity capacitor C4 and a small-capacity capacitor C5 in parallel.
- The capacitance of C4 should be approximately 10µF.
- The capacitance of C5 should be approximately 0.1µF.
- \bullet The V_{DD} PLL and V_{SS} 4 traces must be thicker than the other traces.

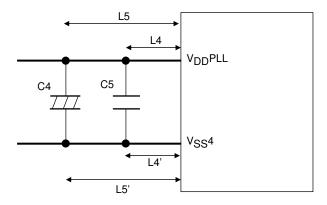


Figure 6

Power Pin Treatment Condition 4 (VREG, VSS1)

Connect capacitors that meet the following conditions between the VREG and VSS1 pins:

- Connect among the VREG and VSS1 pins and the capacitors C6 with the shortest possible lead wires, of the same length (L6=L6') wherever possible.
- \bullet The capacitance of C6 should be approximately $1\mu F.$
- The VREG and VSS1 traces must be thicker than the other traces.

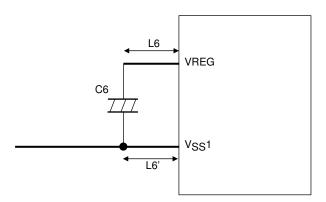


Figure 7

LPF Pin Treatment Condition (LPFO)

Insert a resistor and capacitors that meet the following conditions between the LPFO and VSS4 pins.

 $R1 = 3.3k\Omega$

 $C7 = 0.068 \mu F$

 $C8 = 0.0039 \mu F$

- Routing traces between the LPFO and VSS4 pins and the resistor and capacitors, and between R1 and C7 must be as short as possible.
- * After the PLL circuit is activated, 50ms or more is required for stabilizing oscillation.

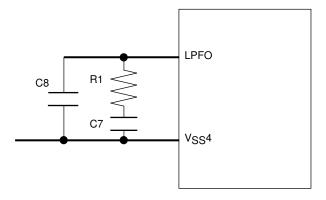


Figure 8

TEST Pin Treatment Condition (TEST)

Insert a resistor that meets the following condition between the TEST and VSS1 pins.

$$R_{TEST} = 100k\Omega$$

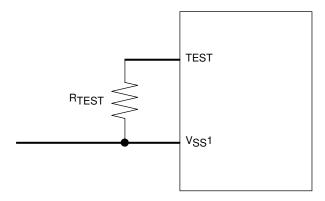


Figure 9

Example of Crystal Oscillator Circuit Characteristics

Given below are the characteristics of a sample crystal oscillator circuit that were measured using a SANYO-designated oscillation characteristics evaluation board and external components with circuit constant values with which the oscillator vendor confirmed normal and stable oscillation.

Table 1 Example of Crystal Oscillator Circuit Characteristics with a Crystal Resonator

				Circuit Constant			Operating	Oscillator	
	Nominal	Vendor	Oscillator Name	C1	C2	Rd	Voltage	Stabilization Time	Remarks
F	Frequency	Name		[pF]	[pF]	[Ω]	Range	tms ^{X'tal} (typ)	
				rie. 1	fle. 1	[]	[V]	[s]	
	32.768kHz	RIVER ELETEC	TFX-03	15	15	680k	V _{DD} CPU=		
	32.7 OORI 12	THVEITELLILO	(CL=12.5pF)	13	13	JOOK	3.0 to 3.6		

The oscillation stabilization time refers to the time interval that is required for the oscillation to get stabilized after the instruction for starting the XT oscillator circuit is executed plus the time interval that is required for the oscillation to get stabilized after the HOLD mode is released (see Figure 11).

Note: The traces to and from the components that are involved in oscillation should be kept as short as possible as the oscillation characteristics are affected by their trace pattern.

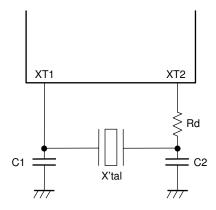


Figure 10 XT Oscillator Circuit

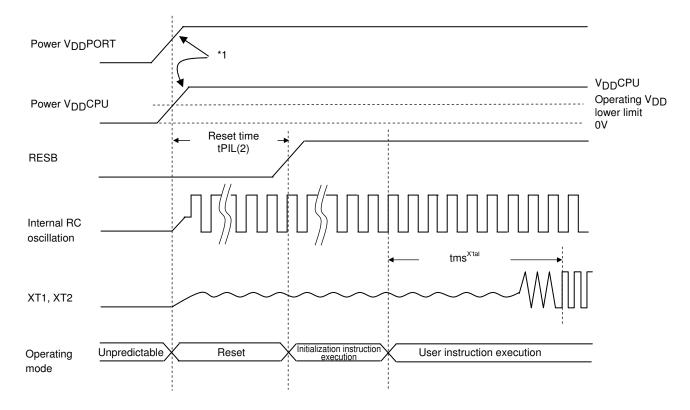


Figure 11 Reset Time and Oscillation Stabilization Time

*1: The voltage when the power is turned on and off must stand in the following relationship: V_{DD}PORT ≥ V_{DD}CPU. It should be noted that, while the V_{DD}PORT power is supplied, the I/O pin remains in an undefined state until the V_{DD}CPU voltage reaches the allowable operation range.

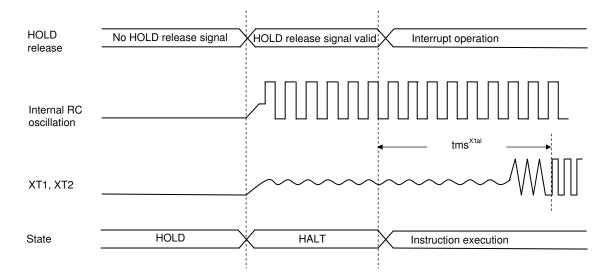
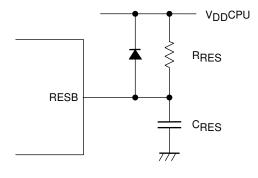



Figure 12 HOLD Release and Oscillation Stabilization Time

Reset Pin Treatment Condition (RESB)

(Note)

When the power is turned on, the RESB pin must be set to the low level

(A reset period of 50µs or longer is required after the power has stabilized.)

Recommended value

 $\begin{array}{l} R_{RES}\text{: }100\text{k}\Omega \\ C_{RES}\text{: }0.033\mu\text{F} \end{array}$

Figure 13 Reset Circuit

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of December, 2010. Specifications and information herein are subject to change without notice.