

SANYO Semiconductors

DATA SHEET

An ON Semiconductor Company

LV5234V

Bi-CMOS IC

9-channel LED Driver

Overview

The LV5234V is a 9-channel LED driver IC that is capable of switching between constant-current output and open drain output. It enables 3-wire serial bus control (address designation)/I²C serial bus control to be set arbitrarily using an external pin. Also possible are 9-channel LED ON/OFF control and the setting of the PWM luminance in 256 steps. The device also has a built-in fade-in/fade-out function. Up to 32 driver ICs can be connected using the slave address setting pins.

Features

- 9-channel output constant-current LED driver/open drain output LED driver (selected by using an external pin)
 - Supports separate ON/OFF setting for each LED output, high withstand voltage (V_{OUT}<42V)
 - In the constant-current mode (OUTSCT: L), the reference current is set by the value of resistor connected to the external pin (RT1).
 - Built-in D/A (5 bits) for switching current level ... 0.96mA to 30.7mA (RGB drive)
 - Constant current (I_O max=50mA) for full-color LEDs × 9 channels
 - In the open drain mode (OUTSCT: H), high current drive (I_O max=100mA) × 9 channels
- Luminance adjustment using internal PWM control (256 steps)
 - 8-bit PWM luminance dimming (0% to 99.6%)
 - 3-phase PWM
- Fade-in/fade-out function (PWM control priority), supporting synchronous connection
 - Supports separate fade ON/OFF for each LED output (fade time common for all channels)
 - Interrupt control possible for fade function
- Selection of 3-wire/I²C serial bus control signals enabled (switching using an external pin)
 - Slave addressing (5 bits, connection of up to 32 driver ICs possible)
- Low current consumption
- Output malfunction protection circuits (thermal protection function, UVLO detection protection function)

■ Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment. The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for new introduction or other application different from current conditions on the usage of automotive device, communication device, office equipment, industrial equipment etc. , please consult with us about usage condition (temperature, operation time etc.) prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.

■ Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

SANYO Semiconductor Co., Ltd.

<http://semicon.sanyo.com/en/network>

Specifications**Maximum Ratings** at $T_a = 25^\circ\text{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V_{CC} max		6	V
Output voltage	V_O max	LED off	42	V
Output current	I_O max		100	mA
Allowable power dissipation	P_d max	$T_a \leq 25^\circ\text{C}$ *	0.84	W
Operating temperature	T_{opr}		-25 to +75	$^\circ\text{C}$
Storage temperature	T_{stg}		-40 to +125	$^\circ\text{C}$

* Specified board : 114.3mm × 76.1mm × 1.6mm, glass epoxy board.

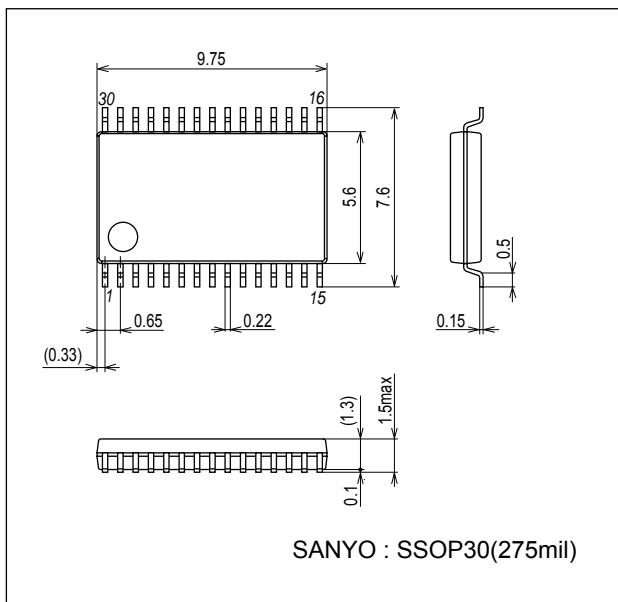
[Warning]: If you should intend to use this IC continuously under high temperature, high current, high voltage, or drastic temperature change, even if it is used within the range of absolute maximum ratings or operating conditions, there is a possibility of decrease reliability. Please contact us for a confirmation.

Operating Conditions at $T_a = 25^\circ\text{C}$

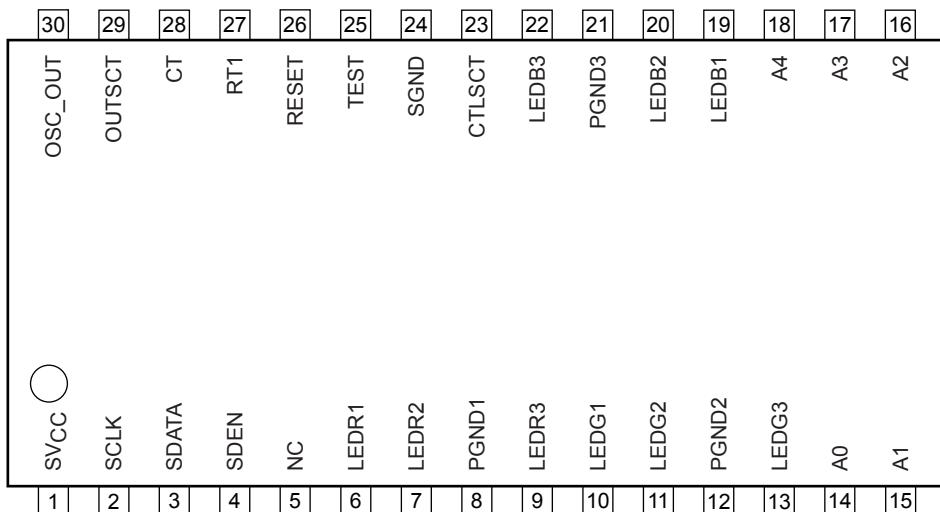
Parameter	Symbol	Conditions	Ratings	Unit
Recommended supply voltage	V_{CC}	SV_{CC}	5.0	V
Operating supply voltage range	V_{CC} op	SV_{CC}	4.5 to 5.5	V

Electrical Characteristics at $T_a = 25^\circ\text{C}$, $V_{CC} = 5.0\text{V}$

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Consumption current	I_{CC2}	LED off		3.5	5.5	mA
Oscillator frequency	F_{osc}		900	1000	1100	kHz
Reference current pin voltage	V_{RT}	$RT1=22\text{k}\Omega$	0.92	0.98	1.04	V
MAX output current	ΔI_L	$V_O=0.7$ to 4.0V (Same channel line regulation)	-10			%
Between bits output current	ΔI_{OL}	$I_O=30.7\text{mA}$ (Between bits pairing characteristics)			5	%
Maximum LED driver output current 1	I_{MAX1}	LED OUTSCT=L	28.8	30.7	32.6	mA
LEDO output on resistance	R_{on1}	LED1, LED2, LED3 ($I_O = 100\text{mA}$)		4	10	Ω
OFF leak current	I_{leak}	LED off			10	μA
Driver output malfunction protection voltage	V_t	SV_{CC}	2.58	2.70	2.82	V



Control circuit at $T_a = 25^\circ\text{C}$, $V_{CC} = 5.0\text{V}$

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
H level 1	$VH1$	Input H level OUTSCT	4.7		5	V
L level 1	$VL1$	Input L level OUTSCT	-0.2		0.3	V
H level 2	$VH2$	Input H level CTLSCT	$0.7 \times V_{CC}$		V_{CC}	V
L level 2	$VL2$	Input L level CTLSCT	-0.2		0.3	V
H level 3	$VH3$	Input H level RESET	$0.8 \times V_{CC}$		V_{CC}	V
L level 3	$VL3$	Input L level RESET	-0.2		$0.2 \times V_{CC}$	V
H level 4	$VH4$	Input H level SCLK, SDATA, SDEN	$0.8 \times V_{CC}$		V_{CC}	V
L level 4	$VL4$	Input L level SCLK, SDATA, SDEN	-0.2		$0.2 \times V_{CC}$	V
H level 5	$VH7$	Input H level A0 to A4	$0.7 \times V_{CC}$		V_{CC}	V
L level 5	$VL7$	Input L level A0 to A4	-0.2		0.3	V


Package Dimensions

unit : mm (typ)

3191B

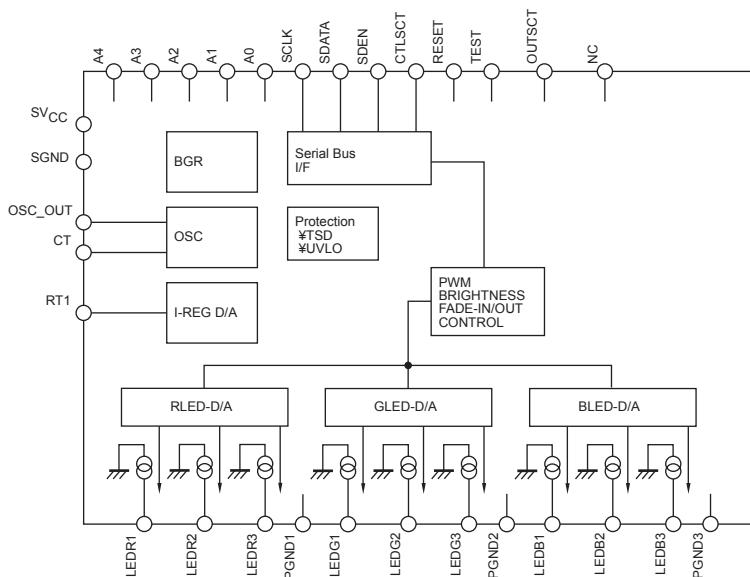
Pin Assignment

Top view

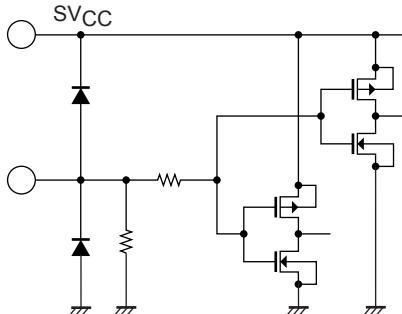
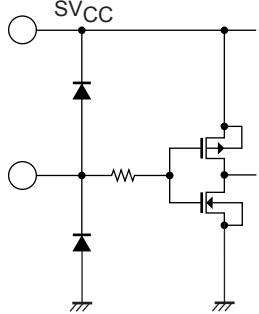
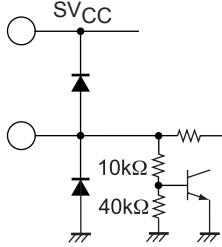
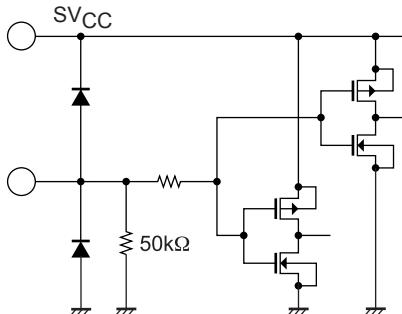
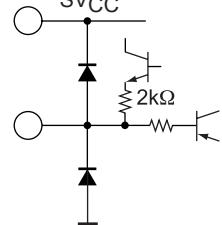
Pin Descriptions

Pin No.	Pin name	I/O	Description
1	SV _{CC}	-	Power supply pin
2	SCLK	I	Serial clock signal input pin
3	SDATA	I	Serial data signal input pin
4	SDEN	I	Serial enable signal input pin
5	NC	-	No connection
6	LEDR1	O	LEDR1 output pin
7	LEDR2	O	LEDR2 output pin
8	PGND1	-	GND pin dedicated for LED driver
9	LEDR3	O	LEDR3 output pin
10	LEDG1	O	LEDG1 output pin

Continued on next page.

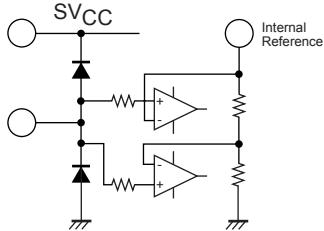
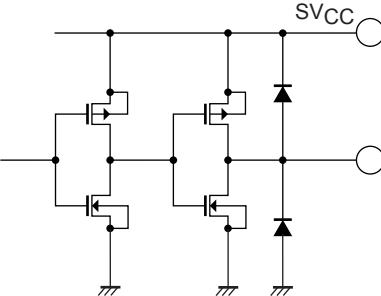
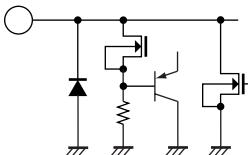

Continued from preceding page.

Pin No.	Pin name	I/O	Description
11	LEDG2	O	LEDG2 output pin
12	PGND2	-	GND pin dedicated for LED driver
13	LEDG3	O	LEDG3 output pin
14	A0	I	Slave address input pin A0
15	A1	I	Slave address input pin A1
16	A2	I	Slave address input pin A2
17	A3	I	Slave address input pin A3
18	A4	I	Slave address input pin A4
19	LEDB1	O	LEDB1 output pin
20	LEDB2	O	LEDB2 output pin
21	PGND3	-	GND pin dedicated for LED driver
22	LEDB3	O	LEDB3 output pin
23	CTLSC	I	3-wire serial bus/I ² C serial bus selecting control pin (L: 3-wire serial, H: I ² C)
24	SGND	-	Analog circuit GND pin
25	TEST	I	Test pin (connected to GND)
26	RESET	I	Reset signal input pin
27	RT1	O	LED current setting resistor connection pin 1
28	CT	O	Oscillation frequency setting capacitor connection pin
29	OUTSCT	I	Output type switching control pin L: Constant-current output H: Open drain output
30	OSC_OUT	O	Oscillator output pin (synchronous connection)






OUTSCT Settings at SVCC=5.0V

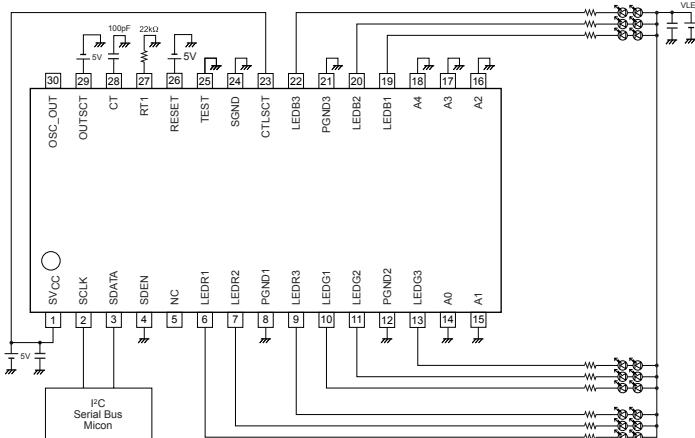
	LED Driver Output Pin
OUTSCT pin	LED1, LED2, LED3
L=-0.2 to 0.3V	Constant current output Built-in current value switching D/A (5 bits) 0.96mA to 30.7mA, RT1=22kΩ (f=1MHz)
H=4.7 to 5.0V	Open drain output Current value is determined by external limiting resistor. RON=4Ω

Block Diagram




Pin Functions

Pin No.	Pin Name	Pin function	Equivalent Circuit
1	SVCC	Power supply pin	
2 3 4	SCLK SDATA SDEN	Serial clock signal input pin Serial data signal input pin Serial enable signal input pin	
14 15 16 17 18 23	A0 A1 A2 A3 A4 CTLSC1	Slave address setting pin A0 Slave address setting pin A1 Slave address setting pin A2 Slave address setting pin A3 Slave address setting pin A4 Serial bus communication setting pin When set to low: The 3-wire serial bus signals are set as the input signals. When set to high: The I ² C serial bus signals are set as the input signals.	
29	OUTSCT	LED driver output type setting pin When set to low: Constant-current output is set for the LED driver. When set to high: Open drain output is set for the LED driver.	
24	SGND	GND pin	
25	TEST	Test pin This pin must always be connected to GND.	
26	RESET	Reset signal input pin Reset status when set to low.	
27	RT1	Reference current setting resistor connection pin. By connecting the external register between this pin and GND, the reference current is generated. The pin voltage is approximately 0.98V. By changing the current level, it is possible to change the oscillator frequency and LED driver current value (in the constant-current mode).	

Continued on next page.

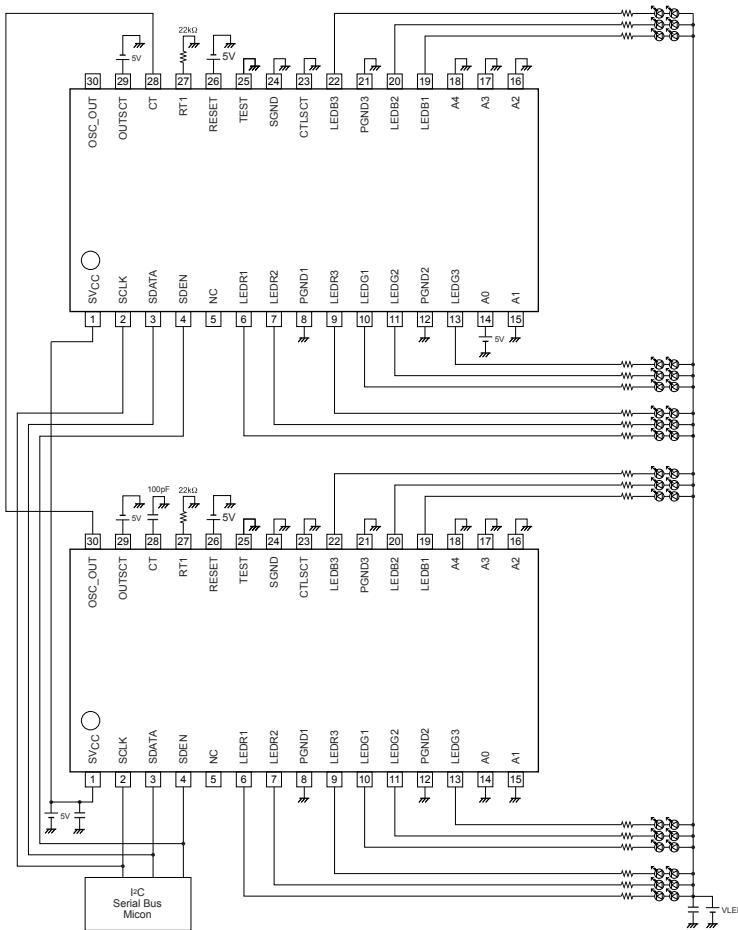

LV5234V

Continued from preceding page.

Pin No.	Pin Name	Pin function	Equivalent Circuit
28	CT	Oscillator frequency setting capacitor connection pin/oscillator input pin. By changing the value of capacitance, it is possible to change the oscillator frequency. The capacitor must be connected to this pin of the master-side IC. The CT pin of the slave-side IC must be connected as the oscillator input pin.	
30	OSC_OUT	Oscillator output pin When a multiple number of driver ICs are connected for use, the oscillators can be connected in synchronization by connecting the OSC_OUT output to the CT pin of the ICs to be connected.	
6 7 9 10 11 13 19 20 22	LEDR1 LEDR2 LEDR3 LEDG1 LEDG2 LEDG3 LEDB1 LEDB2 LEDB3	LEDR1 output pin LEDR2 output pin LEDR3 output pin LEDG1 output pin LEDG2 output pin LEDG3 output pin LEDB1 output pin LEDB2 output pin LEDB3 output pin If these pins are not going to be used, they must always be connected to GND.	
8 12 21	PGND1 PGND2 PGND3	GND pin dedicate for LEDR GND pin dedicate for LEDG GND pin dedicate for LEDE	
5	NC	No connection	

Application Circuit Diagrams

- Specifications when one driver IC is used


Use as a master-side IC

Slave selection: A0-A4: low

Address setting: Master (010-0000)

Nothing must be connected to the NC pins

- Specifications when more than one driver IC is used

Use as a master-side IC

Slave selection: A0 : high

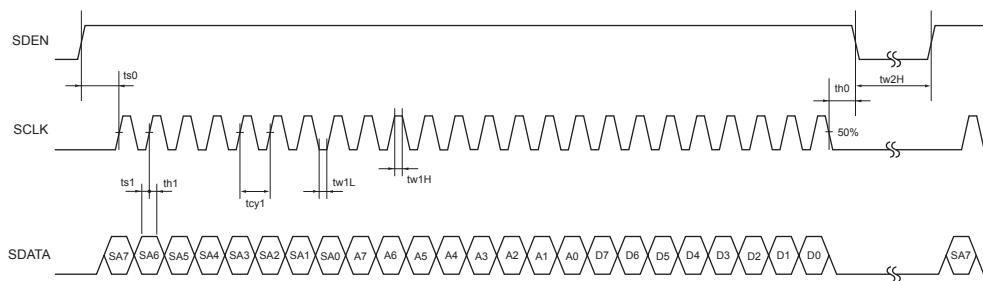
A1-A4: low

Address setting: Master (010-0000)

Use as a slave-side IC

Slave selection: A0 high: A1-A4 low

Address setting: Slave (010-0001)


The oscillator frequency is determined by the master IC.

The synchronous connection of the oscillator can be established by connecting the oscillator output (OSC_OUT) to the CT pins of the slave-side ICs.

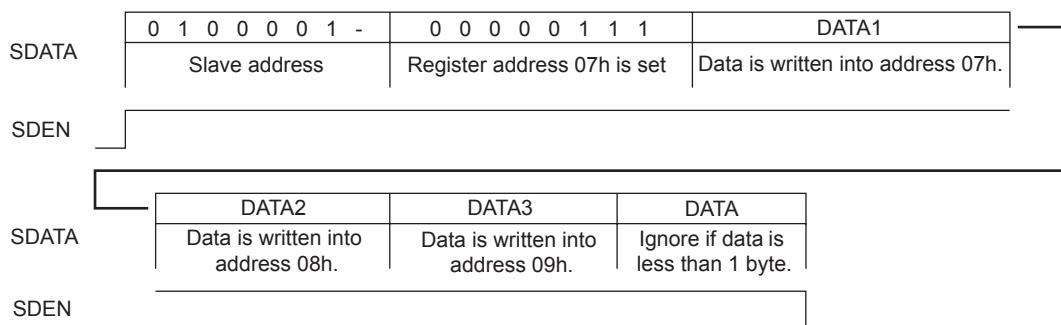
Nothing must be connected to the NC pins.

Serial Bus Communication Specifications

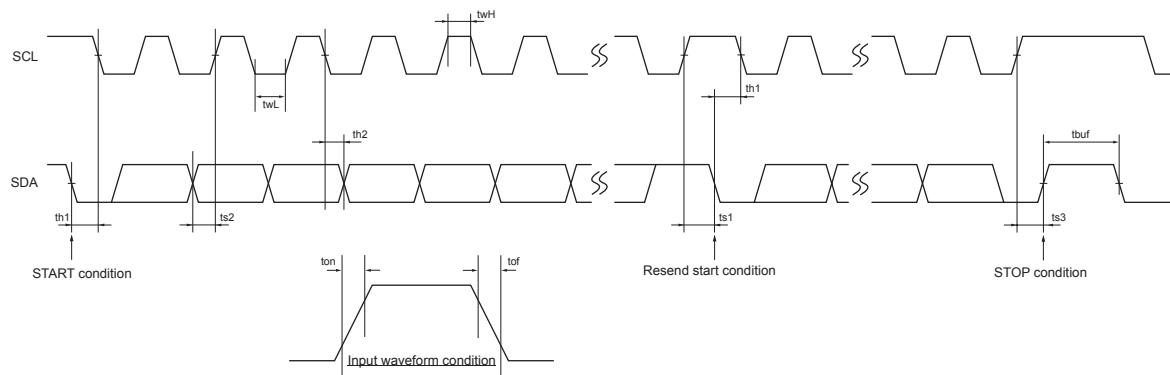
1) 3-wire serial bus transfer timing conditions

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
Cycle time	tcy1	SCLK clock period	200	-	-	ns
Data setup time	ts0	SDEN setup time relative to the rise of SCLK	90	-	-	ns
	ts1	SDATA setup time relative to the rise of SCLK	60	-	-	ns
Data hold time	th0	SDEN hold time relative to the fall of SCLK	200	-	-	ns
	th1	SDATA hold time relative to the fall of SCLK	60	-	-	ns
Pulse width	tw1L	Low period pulse width of SCLK	90	-	-	ns
	tw1H	High period pulse width of SCLK	90	-	-	ns
	tw2L	Low period pulse width of SDEN	1	-	-	μs

Data length: 24 bits


Clock frequency: 5 MHz or less

When 24 SCLK clock signals have been input during the high period of SDEN, the SDATA is taken in at the rising edge of SCLK.


Note: If the number of SCLK clock signals during the high period of SDEN is 23 or less, SDATA is not taken in. If it is 25 or more, the register address is automatically incremented every time 1 byte is taken in.

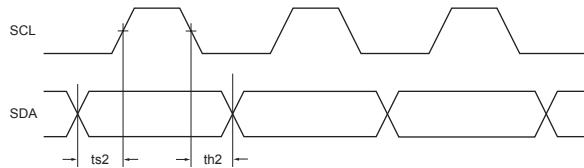
The slave address is assigned by the first byte, and the register address on the serial map is specified by the next byte. The third byte transfers the data to the address specified by the register address that was written by the second byte and if the data subsequently continues even after this, the register address is automatically incremented for the fourth and subsequent bytes. As a result, it is possible to send the data continuously from the specified addresses. Data of less than one byte is ignored. However, when the address reaches 15h, in the next byte to be transferred becomes 00h.

Example of a write operation:

2) I²C serial transfer timing conditions

Standard mode

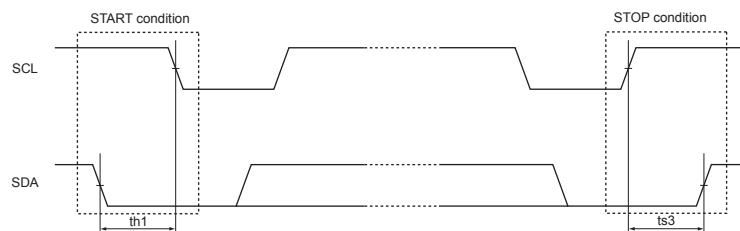
Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
SCL clock frequency	fsc1	SCL clock frequency	0	-	100	kHz
Data setup time	ts1	SCL setup time relative to the fall of SDA	4.7	-	-	μs
	ts2	SDA setup time relative to the rise of SCL	250	-	-	ns
	ts3	SCL setup time relative to the rise of SDA	4.0	-	-	μs
Data hold time	th1	SCL hold time relative to the fall of SDA	4.0	-	-	μs
	th2	SDA hold time relative to the fall of SCL	0	-	-	μs
Pulse width	twL	SCL pulse width for the L period	4.7	-	-	μs
	twH	SCL pulse width for the H period	4.0	-	-	μs
Input waveform conditions	ton	SCL and SDA (input) rise time	-	-	1000	ns
	tof	SCL and SDA (input) fall time	-	-	300	ns
Bus free time	tbuf	Time between STOP condition and START condition	4.7	-	-	μs


High-speed mode

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
SCL clock frequency	fsc1	SCL clock frequency	0	-	400	kHz
Data setup time	ts1	SCL setup time relative to the fall of SDA	0.6	-	-	μs
	ts2	SDA setup time relative to the rise of SCL	100	-	-	ns
	ts3	SCL setup time relative to the rise of SDA	0.6	-	-	μs
Data hold time	th1	SCL hold time relative to the fall of SDA	0.6	-	-	μs
	th2	SDA hold time relative to the fall of SCL	0	-	-	μs
Pulse width	twL	SCL pulse width for the L period	1.3	-	-	μs
	twH	SCL pulse width for the H period	0.6	-	-	μs
Input waveform conditions	ton	SCL and SDA (input) rise time	-	-	300	ns
	tof	SCL and SDA (input) fall time	-	-	300	ns
Bus free time	tbuf	Time between STOP and START conditions	1.3	-	-	μs

I²C bus transfer method

Start and stop conditions

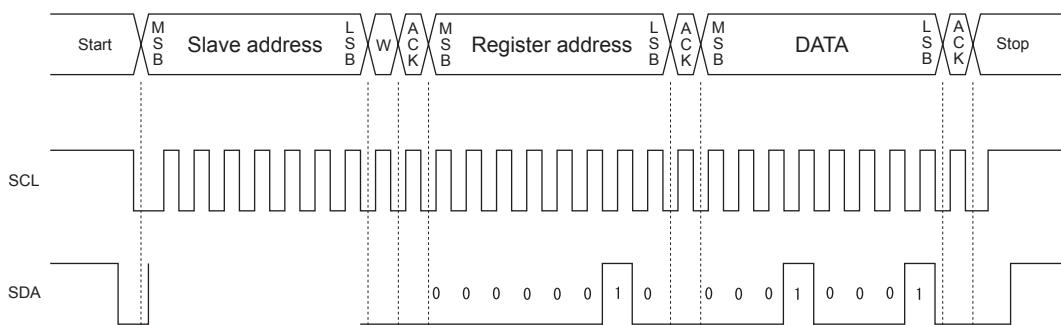

During data transfer operation using the I²C bus, SDA must basically be kept in constant state while SCL is “H” as shown below.

When data is not being transferred, both SCL and SDA are set in the “H” state.

When SCL=SDA is “H,” the start condition is established when SDA is changed from “H” to “L,” and access is started.

When SCL is “H,” the stop condition is established when SDA is changed from “L” to “H,” and access is ended.

Data transfer and acknowledgement response


After the start condition has been established, the data is transferred one byte (8 bits) at a time.

Any number of bytes of data can be transferred continuously.

Each time the 8-bit data is transferred, the ACK signal is sent from the receive side to the send side. The ACK signal is issued when SDA on the send side is released and SDA on the receive side is set to “L” immediately after fall of the clock pulse at the SCL eighth bit of data transfer to “L.”

When the next 1-byte transfer is left in the receive state after sending the ACK signal from the receive side, the receive side releases SDA at the fall of the SCL ninth clock.

In the I²C bus, there is no CE signal. In its place, a 7-bit slave address is assigned to each device, and the first byte of transfer is assigned to the command (R/W) representing the 7-bit address and subsequent transfer direction. Note that only write is valid in this IC. The 7-bit address is transferred sequentially starting with MSB, and the eighth bit is set to “L” which indicates a write.

LV5234V

Slave address condition

		SLAVE ADDRESS							
		SA7	SA6	SA5	SA4	SA3	SA2	SA1	SA0
register name	-		-	A4	A3	A2	A1	A0	-
default	0	1	0	0	0	0	0	0	-

Terminal PIN				
A4	A3	A2	A1	A0
L	L	L	L	L
L	L	L	L	H
L	L	L	H	L
L	L	L	H	H
L	L	H	L	L
L	L	H	L	H
L	L	H	H	L
L	L	H	H	H
L	H	L	L	L
L	H	L	L	H
L	H	L	H	L
L	H	H	L	L
L	H	H	L	H
L	H	H	H	L
H	L	L	L	L
H	L	L	L	H
H	L	L	H	L
H	L	L	H	H
H	H	L	L	L
H	H	L	L	H
H	H	L	H	L
H	H	H	L	L
H	H	H	L	H
H	H	H	H	L
H	H	H	H	H

SA7	SA6	SA5	SA4	SA3	SA2	SA1	SA0
0	1	0	0	0	0	0	-
0	1	0	0	0	0	1	-
0	1	0	0	0	1	0	-
0	1	0	0	0	1	1	-
0	1	0	0	1	0	0	-
0	1	0	0	1	0	1	-
0	1	0	0	1	1	0	-
0	1	0	0	1	1	1	-
0	1	0	1	0	0	0	-
0	1	0	1	0	0	1	-
0	1	0	1	0	1	0	-
0	1	0	1	1	1	1	-
0	1	0	1	1	0	0	-
0	1	0	1	1	0	1	-
0	1	0	1	1	1	0	-
0	1	0	1	1	1	1	-
0	1	0	1	1	1	1	-
0	1	1	0	0	0	0	-
0	1	1	0	0	0	1	-
0	1	1	0	0	1	0	-
0	1	1	0	1	1	0	-
0	1	1	0	1	1	1	-
0	1	1	1	0	0	0	-
0	1	1	1	0	0	1	-
0	1	1	1	0	1	0	-
0	1	1	1	0	1	1	-
0	1	1	1	1	0	0	-
0	1	1	1	1	0	1	-
0	1	1	1	1	1	0	-
0	1	1	1	1	1	1	-

:LV5234

LV5234V

Serial each mode setting

	ADDRESS : 00h							
	D7	D6	D5	D4	D3	D2	D1	D0
register name	-	PWM[2]	PWM[1]	PWM[0]	-	-	MAS	-
default	0	0	0	0	0	0	0	0

D6	D5	D4	time(ms)
0	0	0	0.5
0	0	1	1.0
0	1	0	2.0
0	1	1	4.0
1	0	0	8.0
-	-	-	-
-	-	-	-
-	-	-	-
-	-	-	-

PWM cycle setting

*Default

D1	MAS
0	Master
1	Slave

Master/Slave setting

*Default

	ADDRESS : 01h							
	D7	D6	D5	D4	D3	D2	D1	D0
register name	-	FOUT[2]	FOUT[1]	FOUT[0]	-	FIN[2]	FIN[1]	FIN[0]
default	0	0	0	0	0	0	0	0

D6	D5	D4	time(ms)
0	0	0	No slope
0	0	1	0.5
0	1	0	1.0
0	1	1	2.0
1	0	0	4.0
1	0	1	8.0
1	1	0	16.0
1	1	1	32.0

Fout slope setting

*Default

D2	D1	D0	time(ms)
0	0	0	No slope
0	0	1	0.5
0	1	0	1.0
0	1	1	2.0
1	0	0	4.0
1	0	1	8.0
1	1	0	16.0
1	1	1	32.0

Fin slope setting

*Default

Speed of fade a step

(It takes 256 above-mentioned, set value × seconds until the fade is completed.)

Speed of fade a step

(It takes 256 above-mentioned, set value × seconds until the fade is completed.)

	ADDRESS : 02h							
	D7	D6	D5	D4	D3	D2	D1	D0
register name	-	-	-	RLED[4]	RLED[3]	RLED[2]	RLED[1]	RLED[0]
default	0	0	0	0	0	0	0	0

D4	D3	D2	D1	D0	Current value (mA)
0	0	0	0	0	0.96
0	0	0	0	1	1.92
0	0	0	1	0	2.88
0	0	0	1	1	3.84
0	0	1	0	0	4.80
0	0	1	0	1	5.76
0	0	1	1	0	6.72
0	0	1	1	1	7.68
0	1	0	0	0	8.64
0	1	0	0	1	9.60
0	1	0	1	0	10.56
0	1	0	1	1	11.52
0	1	1	0	0	12.48
0	1	1	0	1	13.44
0	1	1	1	0	14.40
0	1	1	1	1	15.36
1	0	0	0	0	16.32
1	0	0	0	1	17.28
1	0	0	1	0	18.24
1	0	0	1	1	19.20
1	0	1	0	0	20.16
1	0	1	0	1	21.12
1	0	1	1	0	22.08
1	0	1	1	1	23.04
1	1	0	0	0	24.00
1	1	0	0	1	24.96
1	1	0	1	0	25.92
1	1	0	1	1	26.88
1	1	1	0	0	27.84
1	1	1	0	1	28.80
1	1	1	1	0	29.76
1	1	1	1	1	30.72

RLED current value setting

* Default

	ADDRESS : 03h							
	D7	D6	D5	D4	D3	D2	D1	D0
register name	-	-	-	GLED[4]	GLED[3]	GLED[2]	GLED[1]	GLED[0]
default	0	0	0	0	0	0	0	0

D4	D3	D2	D1	D0	Current value (mA)
0	0	0	0	0	0.96
0	0	0	0	1	1.92
0	0	0	1	0	2.88
0	0	0	1	1	3.84
0	0	1	0	0	4.80
0	0	1	0	1	5.76
0	0	1	1	0	6.72
0	0	1	1	1	7.68
0	1	0	0	0	8.64
0	1	0	0	1	9.60
0	1	0	1	0	10.56
0	1	0	1	1	11.52
0	1	1	0	0	12.48
0	1	1	0	1	13.44
0	1	1	1	0	14.40
0	1	1	1	1	15.36
1	0	0	0	0	16.32
1	0	0	0	1	17.28
1	0	0	1	0	18.24
1	0	0	1	1	19.20
1	0	1	0	0	20.16
1	0	1	0	1	21.12
1	0	1	1	0	22.08
1	0	1	1	1	23.04
1	1	0	0	0	24.00
1	1	0	0	1	24.96
1	1	0	1	0	25.92
1	1	0	1	1	26.88
1	1	1	0	0	27.84
1	1	1	0	1	28.80
1	1	1	1	0	29.76
1	1	1	1	1	30.72

GLED current value setting

* Default

	ADDRESS : 04h							
	D7	D6	D5	D4	D3	D2	D1	D0
register name	-	-	-	BLED[4]	BLED[3]	BLED[2]	BLED[1]	BLED[0]
default	0	0	0	0	0	0	0	0

D4	D3	D2	D1	D0	Current value (mA)
0	0	0	0	0	0.96
0	0	0	0	1	1.92
0	0	0	1	0	2.88
0	0	0	1	1	3.84
0	0	1	0	0	4.80
0	0	1	0	1	5.76
0	0	1	1	0	6.72
0	0	1	1	1	7.68
0	1	0	0	0	8.64
0	1	0	0	1	9.60
0	1	0	1	0	10.56
0	1	0	1	1	11.52
0	1	1	0	0	12.48
0	1	1	0	1	13.44
0	1	1	1	0	14.40
0	1	1	1	1	15.36
1	0	0	0	0	16.32
1	0	0	0	1	17.28
1	0	0	1	0	18.24
1	0	0	1	1	19.20
1	0	1	0	0	20.16
1	0	1	0	1	21.12
1	0	1	1	0	22.08
1	0	1	1	1	23.04
1	1	0	0	0	24.00
1	1	0	0	1	24.96
1	1	0	1	0	25.92
1	1	0	1	1	26.88
1	1	1	0	0	27.84
1	1	1	0	1	28.80
1	1	1	1	0	29.76
1	1	1	1	1	30.72

BLED current value setting

* Default

LV5234V

	ADDRESS : 05h							
	D7	D6	D5	D4	D3	D2	D1	D0
register name	-	B2ON	G2ON	R2ON	-	B1ON	G1ON	R1ON
default	0	0	0	0	0	0	0	0

D6	B2ON
0	OFF
1	ON

LEDB2 ON/OFF setting

* Default

D5	G2ON
0	OFF
1	ON

LEDG2 ON/OFF setting

* Default

D4	R2ON
0	OFF
1	ON

LEDR2 ON/OFF setting

* Default

D2	B1ON
0	OFF
1	ON

LEDB1 ON/OFF setting

* Default

D1	G1ON
0	OFF
1	ON

LEDG1ON/OFF setting

* Default

D0	R1ON
0	OFF
1	ON

LEDR1 ON/OFF setting

* Default

	ADDRESS : 06h							
	D7	D6	D5	D4	D3	D2	D1	D0
register name	-	-	-	-	-	B3ON	G3ON	R3ON
default	0	0	0	0	0	0	0	0

D2	B3ON
0	OFF
1	ON

LEDB3 ON/OFF setting

* Default

D1	G3ON
0	OFF
1	ON

LEDG3 ON/OFF setting

* Default

D0	R3ON
0	OFF
1	ON

LEDR3 ON/OFF setting

* Default

	ADDRESS : 07h							
	D7	D6	D5	D4	D3	D2	D1	D0
register name	-	-	R3PON[1]	R3PON[0]	R2PON[1]	R2PON[0]	R1PON[1]	R1PON[0]
default	0	0	0	0	0	0	0	0

D5	D4	R3PON
0	0	PMW output priority
0	1	Fade output priority
1	0	Compulsion ON/OFF output priority
-	-	-

LEDR3 output setting

* Default

D3	D2	R2PON
0	0	PMW output priority
0	1	Fade output priority
1	0	Compulsion ON/OFF output priority
-	-	-

LEDR2 output setting

* Default

D1	D0	R1PON
0	0	PMW output priority
0	1	Fade output priority
1	0	Compulsion ON/OFF output priority
-	-	-

LEDR1 output setting

* Default

	ADDRESS : 08h							
	D7	D6	D5	D4	D3	D2	D1	D0
register name	-	-	G3PON[1]	G3PON[0]	G2PON[1]	G2PON[0]	G1PON[1]	G1PON[0]
default	0	0	0	0	0	0	0	0

D5	D4	G3PON
0	0	PMW output priority
0	1	Fade output priority
1	0	Compulsion ON/OFF output priority
-	-	-

LEDG3 output setting

* Default

D3	D2	G2PON
0	0	PMW output priority
0	1	Fade output priority
1	0	Compulsion ON/OFF output priority
-	-	-

LEDG2 output setting

* Default

D1	D0	G1PON
0	0	PMW output priority
0	1	Fade output priority
1	0	Compulsion ON/OFF output priority
-	-	-

LEDG1 output setting

* Default

	ADDRESS : 09h							
	D7	D6	D5	D4	D3	D2	D1	D0
register name	-	-	B3PON[1]	B3PON[0]	B2PON[1]	B2PON[0]	B1PON[1]	B1PON[0]
default	0	0	0	0	0	0	0	0

D5	D4	B3PON
0	0	PMW output priority
0	1	Fade output priority
1	0	Compulsion ON/OFF output priority
-	-	-

LEDB3 output setting

* Default

D3	D2	B2PON
0	0	PMW output priority
0	1	Fade output priority
1	0	Compulsion ON/OFF output priority
-	-	-

LEDB2 output setting

* Default

D1	D0	B1PON
0	0	PMW output priority
0	1	Fade output priority
1	0	Compulsion ON/OFF output priority
-	-	-

LEDB1 output setting

* Default

LV5234V

	ADDRESS : 0ah							
	D7	D6	D5	D4	D3	D2	D1	D0
register name	-	R3CM	R2CM	R1CM	-	R3FD	R2FD	R1FD
default	0	0	0	0	0	0	0	0

D6	R3CM
0	Compulsion OFF
1	Compulsion ON

LEDR3 compulsion ON/OFF setting

* Default

D5	R2CM
0	Compulsion OFF
1	Compulsion ON

LEDR2 compulsion ON/OFF setting

* Default

D4	R1CM
0	Compulsion OFF
1	Compulsion ON

LEDR1 compulsion ON/OFF setting

* Default

D2	R3FD
0	Fade invalidity
1	Fade effective

LEDR3 fade function ON/OFF setting

* Default

D1	R2FD
0	Fade invalidity
1	Fade effective

LEDR2 fade function ON/OFF setting

* Default

D0	R1FD
0	Fade invalidity
1	Fade effective

LEDR1 fade function ON/OFF setting

* Default

	ADDRESS : 0bh							
	D7	D6	D5	D4	D3	D2	D1	D0
register name	-	G3CM	G2CM	G1CM	-	G3FD	G2FD	G1FD
default	0	0	0	0	0	0	0	0

D6	G3CM
0	Compulsion OFF
1	Compulsion ON

LEDG3 compulsion ON/OFF setting

* Default

D5	G2CM
0	Compulsion OFF
1	Compulsion ON

LEDG2 compulsion ON/OFF setting

* Default

D4	G1CM
0	Compulsion OFF
1	Compulsion ON

LEDG1 compulsion ON/OFF setting

* Default

D2	G3FD
0	Fade invalidity
1	Fade effective

LEDG3 fade function ON/OFF setting

* Default

D1	G2FD
0	Fade invalidity
1	Fade effective

LEDG2 fade function ON/OFF setting

* Default

D0	G1FD
0	Fade invalidity
1	Fade effective

LEDG1 fade function ON/OFF setting

* Default

LV5234V

	ADDRESS : 0ch							
	D7	D6	D5	D4	D3	D2	D1	D0
register name	-	B3CM	B2CM	B1CM	-	B3FD	B2FD	B1FD
default	0	0	0	0	0	0	0	0

D6	B3CM
0	Compulsion OFF
1	Compulsion ON

LEDB3 compulsion ON/OFF setting

* Default

D5	B2CM
0	Compulsion OFF
1	Compulsion ON

LEDB2 compulsion ON/OFF setting

* Default

D4	B1CM
0	Compulsion OFF
1	Compulsion ON

LEDB1 compulsion ON/OFF setting

* Default

D2	B3FD
0	Fade invalidity
1	Fade effective

LEDB3 fade function ON/OFF setting

* Default

D1	B2FD
0	Fade invalidity
1	Fade effective

LEDB2 fade function ON/OFF setting

* Default

D0	B1FD
0	Fade invalidity
1	Fade effective

LEDB1 fade function ON/OFF setting

* Default

	ADDRESS : 0dh							
	D7	D6	D5	D4	D3	D2	D1	D0
register name	R1PWM[7]	R1PWM[6]	R1PWM[5]	R1PWM[4]	R1PWM[3]	R1PWM[2]	R1PWM[1]	R1PWM[0]
default	0	0	0	0	0	0	0	0

LEDR1 PWM Duty setting

(Default ALL0)

D	Duty (%)
00h	0.0
ffh	99.6

$$\text{Duty (\%)} = \frac{\text{R1PWM[7:0]}}{256}$$

	ADDRESS : 0eh							
	D7	D6	D5	D4	D3	D2	D1	D0
register name	G1PWM[7]	G1PWM[6]	G1PWM[5]	G1PWM[4]	G1PWM[3]	G1PWM[2]	G1PWM[1]	G1PWM[0]
default	0	0	0	0	0	0	0	0

LEDG1 PWM Duty setting

(Default ALL0)

D	Duty (%)
00h	0.0
ffh	99.6

$$\text{Duty (\%)} = \frac{\text{G1PWM[7:0]}}{256}$$

	ADDRESS : 0fh							
	D7	D6	D5	D4	D3	D2	D1	D0
register name	B1PWM[7]	B1PWM[6]	B1PWM[5]	B1PWM[4]	B1PWM[3]	B1PWM[2]	B1PWM[1]	B1PWM[0]
default	0	0	0	0	0	0	0	0

LED1 PWM Duty setting

(Default ALL0)

D	Duty (%)
00h	0.0
ffh	99.6

$$\text{Duty (\%)} = \frac{\text{B1PWM[7:0]}}{256}$$

LV5234V

	ADDRESS : 10h							
	D7	D6	D5	D4	D3	D2	D1	D0
register name	R2PWM[7]	R2PWM[6]	R2PWM[5]	R2PWM[4]	R2PWM[3]	R2PWM[2]	R2PWM[1]	R2PWM[0]
default	0	0	0	0	0	0	0	0

LEDR2 PWM Duty setting (Default ALL0)

D	Duty (%)
00h	0.0
ffh	99.6

$$\text{Duty (\%)} = \frac{\text{R2PWM[7:0]}}{256}$$

	ADDRESS : 11h							
	D7	D6	D5	D4	D3	D2	D1	D0
register name	G2PWM[7]	G2PWM[6]	G2PWM[5]	G2PWM[4]	G2PWM[3]	G2PWM[2]	G2PWM[1]	G2PWM[0]
default	0	0	0	0	0	0	0	0

LEDG2 PWM Duty setting (Default ALL0)

D	Duty (%)
00h	0.0
ffh	99.6

$$\text{Duty (\%)} = \frac{\text{G2PWM[7:0]}}{256}$$

	ADDRESS : 12h							
	D7	D6	D5	D4	D3	D2	D1	D0
register name	B2PWM[7]	B2PWM[6]	B2PWM[5]	B2PWM[4]	B2PWM[3]	B2PWM[2]	B2PWM[1]	B2PWM[0]
default	0	0	0	0	0	0	0	0

LEDB2 PWM Duty setting (Default ALL0)

D	Duty (%)
00h	0.0
ffh	99.6

$$\text{Duty (\%)} = \frac{\text{B2PWM[7:0]}}{256}$$

	ADDRESS : 13h							
	D7	D6	D5	D4	D3	D2	D1	D0
register name	R3PWM[7]	R3PWM[6]	R3PWM[5]	R3PWM[4]	R3PWM[3]	R3PWM[2]	R3PWM[1]	R3PWM[0]
default	0	0	0	0	0	0	0	0

LEDR3 PWM Duty setting (Default ALL0)

D	Duty (%)
00h	0.0
ffh	99.6

$$\text{Duty (\%)} = \frac{\text{R3PWM[7:0]}}{256}$$

	ADDRESS : 14h							
	D7	D6	D5	D4	D3	D2	D1	D0
register name	G3PWM[7]	G3PWM[6]	G3PWM[5]	G3PWM[4]	G3PWM[3]	G3PWM[2]	G3PWM[1]	G3PWM[0]
default	0	0	0	0	0	0	0	0

LEDG3 PWM Duty setting (Default ALL0)

D	Duty (%)
00h	0.0
ffh	99.6

$$\text{Duty (\%)} = \frac{\text{G3PWM[7:0]}}{256}$$

	ADDRESS : 15h							
	D7	D6	D5	D4	D3	D2	D1	D0
register name	B3PWM[7]	B3PWM[6]	B3PWM[5]	B3PWM[4]	B3PWM[3]	B3PWM[2]	B3PWM[1]	B3PWM[0]
default	0	0	0	0	0	0	0	0

LEDB3 PWM Duty setting (Default ALL0)

D	Duty (%)
00h	0.0
ffh	99.6

$$\text{Duty (\%)} = \frac{\text{B3PWM[7:0]}}{256}$$

LV5234V

LV5234V serial map

- Table upper row: Register name

- Table the lower: Default value

	A7	A6	A5	A4	A3	A2	A1	A0	D7	D6	D5	D4	D3	D2	D1	D0
00h	0	0	0	0	0	0	0	0	x	PWM[2:0]			x	x	MAS	x
									0	0	0	0	0	0	0	0
01h	0	0	0	0	0	0	0	1	x	FOUT[2:0]			x	FIN[2:0]		
									0	0	0	0	0	0	0	0
02h	0	0	0	0	0	0	1	0	x	x	x	RLED[4:0]				
									0	0	0	0	0	0	0	0
03h	0	0	0	0	0	0	1	1	x	x	x	GLED[4:0]				
									0	0	0	0	0	0	0	0
04h	0	0	0	0	0	1	0	0	x	x	x	BLED[4:0]				
									0	0	0	0	0	0	0	0
05h	0	0	0	0	0	1	0	1	x	B2ON	G2ON	R2ON	x	B1ON	G1ON	R1ON
									0	0	0	0	0	0	0	0
06h	0	0	0	0	0	1	1	0	x	x	x	x	x	B3ON	G3ON	R3ON
									0	0	0	0	0	0	0	0
07h	0	0	0	0	0	1	1	1	x	x	R3PON[1:0]		R2PON[1:0]		R1PON[1:0]	
									0	0	0	0	0	0	0	0
08h	0	0	0	0	1	0	0	0	x	x	G3PON[1:0]		G2PON[1:0]		G1PON[1:0]	
									0	0	0	0	0	0	0	0
09h	0	0	0	0	1	0	0	1	x	x	B3PON[1:0]		B2PON[1:0]		B1PON[2:0]	
									0	0	0	0	0	0	0	0
0ah	0	0	0	0	1	0	1	0	x	R3CM	R2CM	R1CM	x	R3FD	R2FD	R1FD
									0	0	0	0	0	0	0	0
0bh	0	0	0	0	1	0	1	1	x	G3CM	G2CM	G1CM	x	G3FD	G2FD	G1FD
									0	0	0	0	0	0	0	0
0ch	0	0	0	0	1	1	0	0	x	B3CM	B2CM	B1CM	x	B3FD	B2FD	B1FD
									0	0	0	0	0	0	0	0
0dh	0	0	0	0	1	1	0	1	R1PWM[7:0]					R1PON[1:0]		
									0	0	0	0	0	0	0	0
0eh	0	0	0	0	1	1	1	0	G1PWM[7:0]					G1PON[1:0]		
									0	0	0	0	0	0	0	0
0fh	0	0	0	0	1	1	1	1	B1PWM[7:0]					B1PON[1:0]		
									0	0	0	0	0	0	0	0
10h	0	0	0	1	0	0	0	0	R2PWM[7:0]					R2PON[1:0]		
									0	0	0	0	0	0	0	0
11h	0	0	0	1	0	0	0	1	G2PWM[7:0]					G2PON[1:0]		
									0	0	0	0	0	0	0	0
12h	0	0	0	1	0	0	1	0	B2PWM[7:0]					B2PON[1:0]		
									0	0	0	0	0	0	0	0
13h	0	0	0	1	0	0	1	1	R3PWM[7:0]					R3PON[1:0]		
									0	0	0	0	0	0	0	0
14h	0	0	0	1	0	1	0	0	G3PWM[7:0]					G3PON[1:0]		
									0	0	0	0	0	0	0	0
15h	0	0	0	1	0	1	0	1	B3PWM[7:0]					B3PON[1:0]		
									0	0	0	0	0	0	0	0
Register address									Data							

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of August, 2011. Specifications and information herein are subject to change without notice.