LB11660FV

Monolithic Digital IC

Single-Phase Full-Wave Fan Motor Driver

http://onsemi.com

Overview

The LB11660FV is a single-phase bipolar drive half-predriver motor driver that can easily implement a direct PWM driver motor driver circuit with excellent efficiency. The LB11660FV is particularly well suited for the miniature fans used in servers.

Features

- Single-phase full-wave drive (15V, 1.5A transistors are built in) Half predriver with integrated high side transistor
- Built-in variable speed function controlled by an external input

 The LB11660FV can implement quiet, low-vibration variable speed control using externally clocked high side transistor direct PWM drive.
- Minimum speed setting pin
- Current limiter circuit (The limit value is determined by Rf; $I_0 = 1$ A when RF = 0.5 Ω)
- Built-in kickback absorption circuit
- Soft switching circuit makes low current consumption, low loss, and low noise drive possible at phase switching
- Built-in HB
- Built-in lock protection and automatic recovery circuits (built-in on/off ratio switching circuit controlled by the supply voltage)
- •FG (speed detection) output
- Built-in thermal protection circuit (design guarantee)

LB11660FV

Specifications

Absolute Maximum Ratings at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
V _{CC} maximum supply voltage	V _{CC} max		20	٧
VM maximum supply voltage	VM max		20	٧
OUT pin maximum output current	I _{OUT} max	Rf ≥ 0.39Ω	1.5	А
OUT pin output voltage 1	V _{OUT} max 1		20	V
OUT pin output voltage 2	V _{OUT} max 2	T ≤ 0.4μs	26.5	٧
PRE pin maximum source current	IPSO max		30	mA
PRE pin maximum sink current	IPSI max		-7	mA
PRE pin output voltage	VP max		20	V
HB maximum output current	HB max		10	mA
VTH input pin voltage	VTH max		7	٧
FG output pin voltage	VFG max		18	٧
FG output current	IFG max		10	mA
Allowable power dissipation	Pd max	When mounted on a circuit board *1	0.8	W
Operating temperature	Topr	*2	-30 to +90	°C
Storage temperature	Tstg		-55 to +150	°C

^{*1} Specified circuit board : 114.3 \times 76.1 \times 1.6mm³, glass epoxy.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Recommended Operating Conditions at $Ta = 25^{\circ}C$

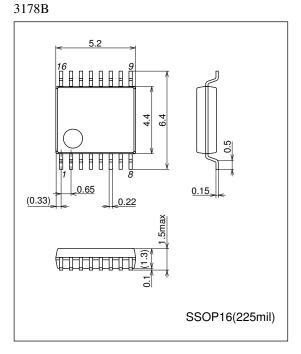
Parameter	Symbol	Conditions	Ratings	Unit
V _{CC} supply voltage	V_{CC}		4 to 15	V
V _M supply voltage	VM		3 to 15	V
Current limiter operation range	ILIM		0.6 to 1.2	V
VTH input level voltage range	VTH		0 to 6	V
Hall sensor input common-mode	VICM		0.2 to 3	V
input voltage range				

Electrical Characteristics Unless otherwise specified Ta = 25°C, V_{CC} = 12V

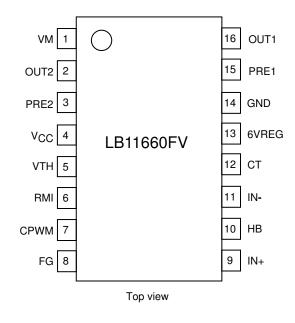
Parameter	Symbol	Conditions		Unit			
Parameter	Symbol	Conditions	min	typ	max	Unit	
Circuit current	I _{CC} 1	Drive mode		9	12	mA	
HB voltage	VHB	IHB = 5mA	1.05	1.25	1.40	٧	
6VREG voltage	V6VREG	6VREG = 5mA	5.80	6	6.20	٧	
CT pin high-level voltage	VCTH		3.4	3.6	3.8	V	
CT pin low-level voltage	VCTL		1.4	1.6	1.8	V	
ICT pin charge current 1	ICTC1	V _{CC} = 12V	1.7	2.2	2.7	μА	
ICT pin charge current 2	ICTC2	V _{CC} = 6V	1.3	1.8	2.3	μΑ	
ICT pin discharge current 1	ICTD1	V _{CC} = 12V	0.11	0.15	0.19	μΑ	
ICT pin discharge current 2	ICTD2	V _{CC} = 6V	0.34	0.44	0.54	μΑ	
ICT charge/discharge current ratio 1	RCT1	V _{CC} = 12V	12	15	18	Times	
ICT charge/discharge current ratio 2	RCT2	VCC = 6V	3	4	5	Times	
ICT charge/discharge ratio threshold voltage	VRCT		6	6.6	7.3	V	
VTH bias current	IBVTH		-2	-1	0	μΑ	
OUT output high saturation voltage	VOH	$I_O = 200$ mA, RL = 1Ω		0.6	0.8	V	

Continued on next page.

^{*2:} Tj max is 150 ℃. This device must be used under conditions such that the chip temperature does not exceed Tj = 150 ℃ during operation.


LB11660FV

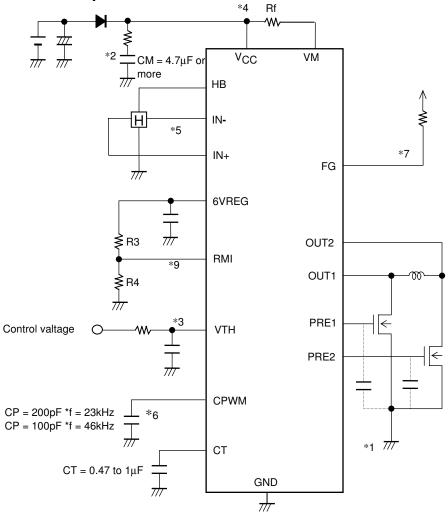
D	0 1 1	0 100					
Parameter	Symbol	Conditions	min typ ma		max	Unit	
PRE output low saturation voltage	V _{PL}	I _O = 5mA		0.2	0.4	V	
PRE output high saturation voltage	V _{PH}	I _O = -20mA		0.9	1.2	V	
Current limiter	VRf	V _{CC} - VM	450	500	550	mV	
PWM output pin high-level voltage	VPWMH		2.2	2.5	2.8	V	
PWM output pin low-level voltage	VPWML		0.4	0.5	0.7	V	
PWM external C charge current	IPWM1		-23	-18	-14	μΑ	
PWM external C discharge current	IPWM2		18	24	30	μА	
PWM oscillator frequency	FPWM	C = 200pF	19	23	27	kHz	
Hall sensor input sensitivity	VHN	Zero peak value (including offset and hysteresis)		15	25	mV	
FG output pin low-level voltage	VFG/RD	IFG/RD = 5mA		0.2	0.3	V	
FG output pin leakage current	IFGL/IRDL	VFG/RD = 7V			30	μΑ	
Thermal protection circuit	THD	Design target value*3	150	180	210	°C	


^{*3:} This is a design guarantee and is not tested in individual units. The thermal protection circuit is included to prevent any thermal damage to the IC. Since this would imply operation outside the IC's guaranteed temperature range, the application thermal design must be such that the thermal protection circuit will not operate if the fan is operating constantly.

Package Dimensions

unit: mm (typ)

Pin Assignment



Truth Table

IN-	IN+	VTH	CPWM	CT	OUT1	OUT2	PRE1	PRE2	FG	Mode							
High	Low	Low	Low		1					1.0.1		High	Off	Low	High	Low	Di
Low	High			High		Off	High	High	Low	Off	During rotation – drive						
High	Low	1.05 - 1.	Low				Low	Off	Off	Low	High	Low	During rotation –				
Low	High	High			Off	Off	High	Low	Off	regeneration							
High	Low			I II ada	Off	Off	Low	High	Low	Look protection							
Low	High	-	-	High	Off	Off	High	Low	Off	Lock protection							

 $\label{eq:cpwm-low} \text{CPWM} - \text{High is the state where CPWM} > \text{VTH, and CPWM-Low is the state where CPWM} < \text{VTH.}$

Application Circuit Example 1

*1. Power supply and ground lines

The IC ground is the control current power supply system ground, and the external n-channel transistor ground is the motor power supply system ground.

These two systems should be formed from separate lines and the control system external components should be connected to the IC ground.

*2. Regeneration power supply stabilization capacitor

Use a $4.7\mu\text{F}/25\text{V}$ capacitor at least for CM, which is the power supply stabilization capacitor for both PWM drive and kickback absorption.

The capacitor CM must be connected to prevent destruction of the IC when power is applied or removed.

*3. Speed Control

(1) Control voltage

The PWM duty is determined by comparing the VTH pin voltage with the PWM oscillator waveform.

When the VTH voltage falls, the on duty increases and when the VTH voltage falls below the PWM output low level, the duty will go to 100%.

(2) Thermistor

For thermistor applications, normally the 6VREG level will be resistor divided and the divided level input to the VTH pin.

The PWM duty is changed by changes in the VTH pin voltage due to changes in temperature.

*4. Current limiter setting

The current limiter circuit operates if the voltage across the resistor between V_{CC} and the VM pin exceeds 0.5V.

Since the current limiter circuit applies limitation at a current determined by $I_O = VRf/Rf$ (where VRf = 0.5V (typical), Rf: resistance of the current detection resistor), the current limiter will operate at $I_O = 1A$ when $Rf = 0.5\Omega$.

The resistor RF must be connected in the circuit and it must have a value such that the circuit operates within the recommended current limiter operating range.

*5. Hall sensor input

Lines that are as short as possible must be used to prevent noise from entering the system. The Hall sensor input circuit consists of a comparator with hysteresis (20mV). We recommend that the Hall sensor input level be at least three times this hysteresis, i.e. at least 60mVp-p.

*6.PWM oscillator frequency setting capacitor

The PWM oscillator oscillates at f = 23kHz when CP is 200pF and at f = 46kHz when CP is 100pF, and this frequency becomes the PWM reference frequency.

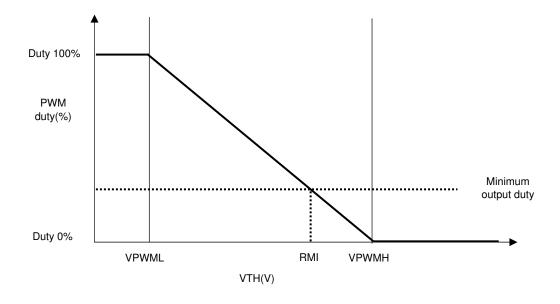
Note that the PWM frequency is given approximately by the following equation.

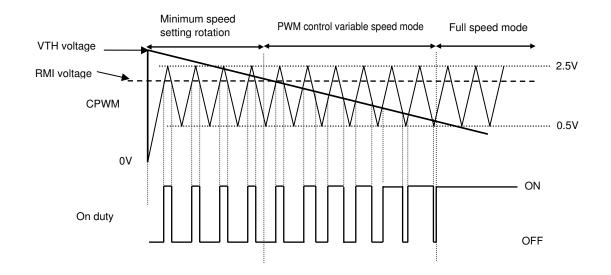
$$f [kHz] \approx (4.6 \times 10^6) \div C [pF]$$

*7.FG output

This is an open collector output, and a rotation count detection function can be implemented using this FG output, which corresponds to the phase switching. This pin must be left open if unused.

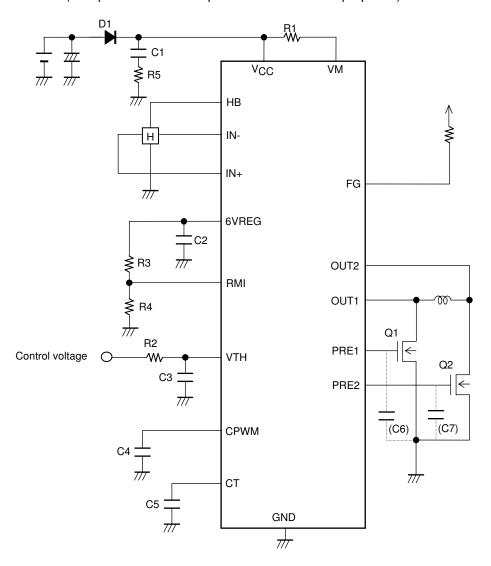
*8.**HB pin**


This pin provides a Hall effect sensor bias constant-voltage output of 1.25V.


*9. RMI pin

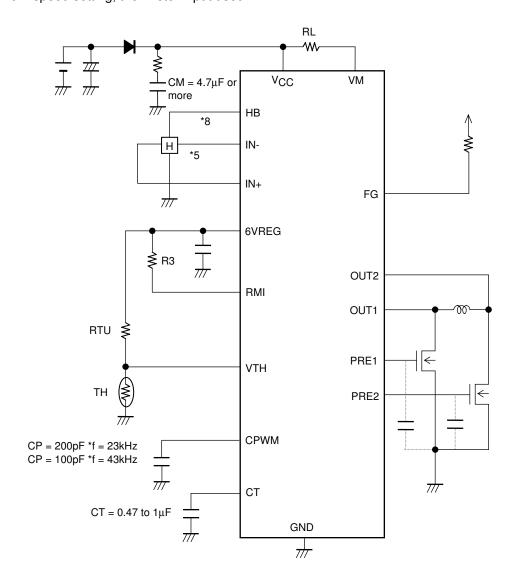
This pin is the speed control minimum speed setting.

The minimum output duty is set by R3 and R4. Leave R4 open to have the motor stop when the duty is 0%.

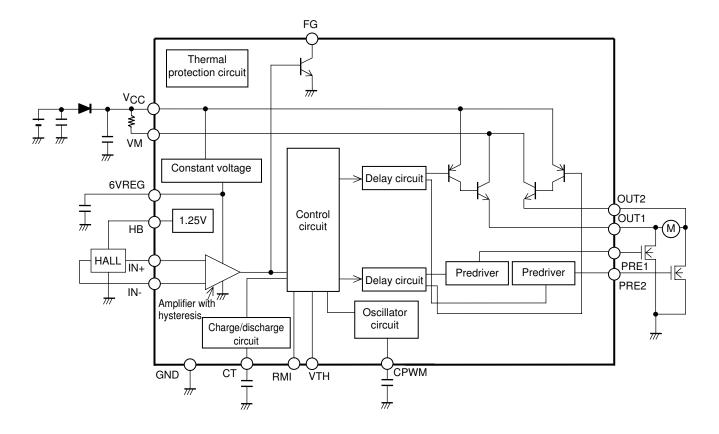

Rotation Control Timing Chart

Application Circuit Example 2

Mounting circuit board (Component values are provided for reference purposes)



Parts List


: SBM30-03-Tr (Our product) Q1, 2 : CPH3418 (Our product) $: 0.51\Omega$ size 3225 **R**1 size 1608 R2 : $15k\Omega$ R3 : 39kΩ size 1608 : 20kΩ size 1608 R4 $: 2.2\Omega$ R5 size 1608 C1 $: 4.7 \mu F/25V \text{ size } 3216$ C2 : 2.2µF size 1608 C3 $: 2.2 \mu F$ size 1608 : 220pF C4 size 1005 : 0.47µF C5 size 1608 C6, 7: No connection

Application Circuit Example 3

No minimum speed setting, thermistor input used

Internal Equivalent Circuit Diagram

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equa