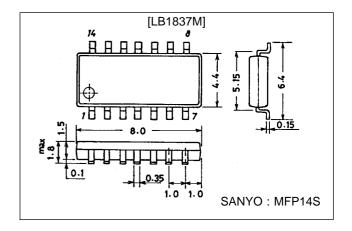


Low-voltage/Low-saturation Bidirectional Constant-Voltage Regulated Motor Driver

Overview

The LB1837M is a low-voltage, low-saturation, two-channel motor driver with a bidirectional braking function that provides constant-voltage regulated output for bidirectional operation. The design of the LB1837M is ideal for video equipment, cameras, and other portable equipment.


Features

- Wide operating voltage range (3.0 to 9.0 V).
- Low saturation voltage V_O (sat) = 0.40 V at I_O = 200 mA.
- Consumes almost no current in standby mode (0.1 µA or less).
- Permits setting of bidirectional constant-voltage regulated value.
- Built-in reference voltage coupled to input.
- Brake function built in.
- · Compact MFP14S package.

Package Dimensions

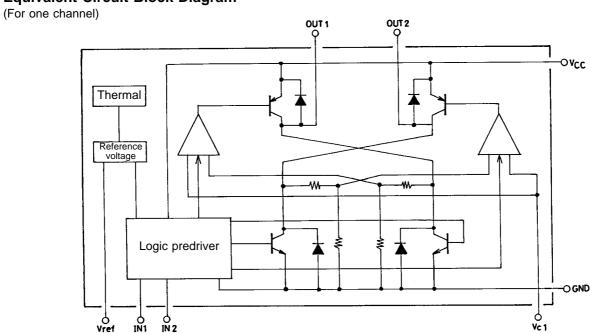
unit: mm

3111-MFP14S

Specifications

Absolute Maximum Ratings at Ta = 25 °C

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} max		10.5	V
Output current	Im max		250	mA
Applied input voltage	V _{IN}		-0.3 to +10	V
Allowable power dissipation	Pd max	With board (30 x 30 x 1.5 mm ³)	800	mW
Operating temperature	Topr		-20 to +80	°C
Storage temperature	Tstg		-40 to +125	∘C

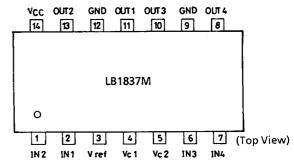

Allowable Operating Ranges at Ta = 25 °C

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V _{CC}		3.0 to 9.0	V
Input [H] voltage	V _{IH}		3.0 to 9.0	V
Input [L] voltage	V _{IL}		-0.3 to +0.7	V
Control voltage	V _C		0.2 to 6.0	V

Electrical Characteristics at Ta = 25 $^{\circ}$ C, V_{CC} = 6 V

Parameter	Symbol	Conditions	min	typ	max	Unit
Supply current	I _{CC} 0	During standby		0.1	10	μA
	I _{CC} 1	(For one channel) During bidirectional operation during control, load open		2	3	mA
I _{CC} ² (For one channel) During bidirectional operation during saturation, load open			3	5	mA	
	I _{CC} 3	During braking (for one channel)		6.5	9	mA
Output saturation voltage Vsat1 I _O = 100 mA (upper side + lower side)		I _O = 100 mA (upper side + lower side)		0.3	0.4	V
	Vsat2	I _O = 200 mA (upper side + lower side)		0.4	0.55	V
	Vsat3	I _O = 200 mA (lower side)	0.07	0.10	0.15	V
Reference voltage	Vref	Ivref = 1 mA	1.85	2.0	2.15	V
Output voltage voltage characteristics	$\frac{\Delta V_{O}}{\Delta V_{CC}}$	$V_{O} = 5 \text{ V}, V_{CC} = 5.5 \text{ to } 9 \text{ V}, $ $I_{O} = 100 \text{ mA}$			20	mV
Output voltage current characteristics	ΔV _O Δl _{CC}	V _O = 5 V, V _{CC} = 6 V, I _O = 10 to 100 mA			50	mV
Input current	I _{IN}	V _{IN} = 5 V		90	150	μA
Output voltage	Vo	Between OUT and GND	2.5 x V _C		2.7 x V _C	V

Equivalent Circuit Block Diagram

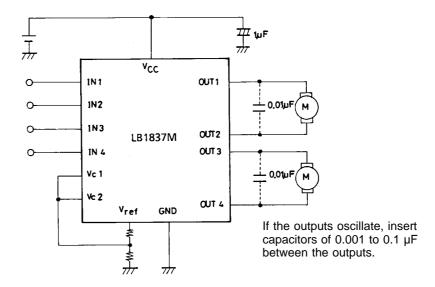


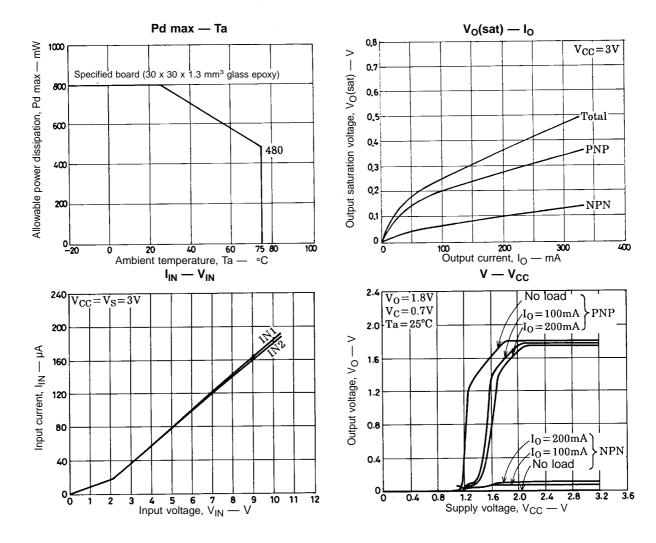
Truth Table

Input		Output		Mode	
IN 1/3	IN 2/4	OUT 1/3	OUT 2/4	Wode	
L	L	OFF	OFF	Standby	
Н	L	Н	L	Constant-voltage regulated forward operation	
L	Н	L	Н	Constant-voltage regulated reverse operation	
Н	Н	L	L	Brake	

The constant-voltage regulated output V_O (= voltage between H side output and GND) is controlled by 2.5 x V_C . The output is in the saturated state when the V_C input range is 0.2 to 6 V and $V_O \geqq V_{CC}$.

Pin Assignment




Note: Both GND pins must be grounded.

Pin Functions

Pin No.	Symbol	Equivalent Circuit Diagram	Pin Function	
14	V _{CC}		Power supply pin for output and controller.	
9 12	GND		GND pins for output and controller. Both must be grounded.	
1 2 6 7	IN2 IN1 IN3 IN4	IN 50kg ■ 80kg ■ 55kg	Input pins that determine the excitation of the outputs. IN1 and IN2 control outputs OUT1 and OUT2; IN3 and IN4 control outputs OUT3 and OUT4. When inputs IN1 through IN4 are all low or open, the device goes into standby mode and current consumption drops to 10 μA or less. L: -0.3 to +0.7 V H: 3.0 to 9.0 V There are no limitations on the magnitude relationships between the V _{CC} and V _{IN} supply voltages.	
8 10 11 13	OUT4 OUT3 OUT1 OUT2	15kg 15kg 10kg 10kg A03936	Output pins. Have built-in spark killer diodes. Braking provides short braking that turns on the lower transistor.	
3	Vref	Vref 5.5kg 10kg	Reference voltage (= 2.0 V).	
4 5	V _C 1 V _C 2	V _C 1.2 Output	Input pins that determine the constant-voltage regulated output level. The constant-voltage regulated output V_O (= voltage between H side output and GND) is controlled by V_O = 2.5 x V_C . There are no limitations on the magnitude relationships between the V_{CC} , V_{C1} and V_{C2} supply voltages.	

Sample Application Circuit

LB1837M

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of June, 1995. Specifications and information herein are subject to change without notice.