

LA6548NH

**Monolithic Linear IC
For CD Players and Recorders
Four-Channel Driver IC**

ON Semiconductor®

<http://onsemi.com>

Overview

The LA6548NH is a four-channel driver IC for CD players and recorders (four BTL amplifier channels).

Functions

- Four BTL connection power amplifier channels
- I_O max 0.7A
- Built-in level shifters
- Muting circuit (on/off control of all outputs)
(This circuit applies to the BTL amplifier circuits. It does not control operation of the regulator.)
- Built-in regulator (provides a 3.3V output using an external pnp transistor)
- Thermal protection circuit (thermal shutdown circuit)

Specifications

Maximum Ratings at $T_a = 25^\circ\text{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V_{CC} max		14	V
Maximum output current	I_O max	For each of the channel 1 to 4 outputs	0.7	A
Maximum input voltage	V_{IN}		13	V
Muting pin application voltage	V_{MUTE}		13	V
Allowable power dissipation	Pd max	Independent IC	0.8	W
		Specified circuit board *	1.8	W
Operating temperature	T_{OPR}		-20 to +75	$^\circ\text{C}$
Storage temperature	T_{STG}		-55 to +150	$^\circ\text{C}$

* Specified substrate : 76.1mmx114.3mmx1.6mm, glass epoxy board.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

LA6548NH

Recommended Operating Conditions at $T_a = 25^\circ\text{C}$

Parameter	Symbol	Conditions	Ratings		Unit
Supply voltage 1	V_{CC1}			4.6 to 13	V
Supply voltage 2	V_{CC2}	Only used by the BTL amplifiers (Not used by the 3.3V regulator circuit)			V

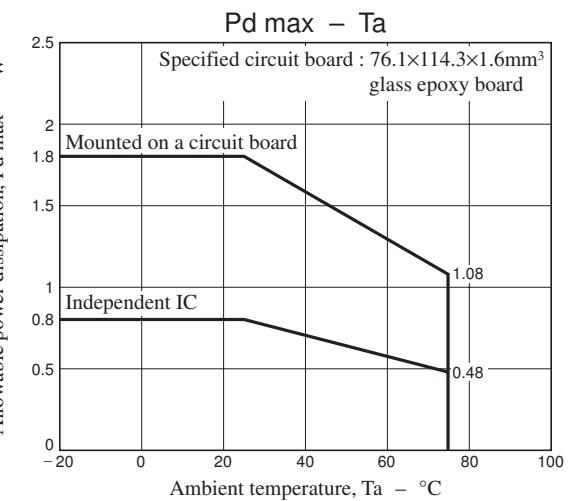
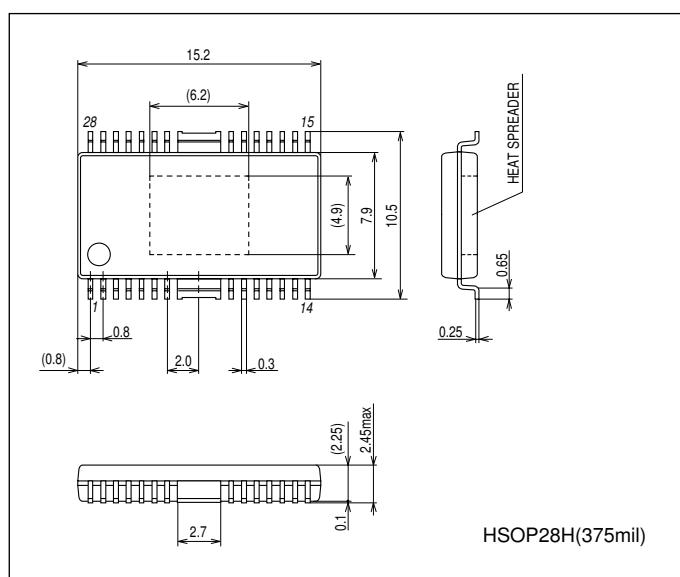
Electrical Characteristics at $T_a = 25^\circ\text{C}$, $V_{CC1} = V_{CC2} = 6\text{V}$, $V_{REF} = 1.65\text{V}$, unless otherwise specified.

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Overall Characteristics						
No-load current drain, on state	I_{CCON}	All outputs on, MUTE : high		20	40	mA
No-load current drain, off state	I_{CCOFF}	All outputs off, MUTE : low		15	35	mA
Thermal shutdown circuit operating temperature	TSD	(Design guarantee value *1)	150	175	200	°C
Output Amplifier Block						
Output offset voltage	V_{OFF}	The voltage difference between each of the + or - outputs.	-50		50	mV
V_{REF} input voltage range	$V_{IN}V_{REF}$		1.3		$V_{CC}-1.5$	V
Output voltage	V_O	The voltage across the outputs when $R_L = 8\Omega$	2.6	3		V
Voltage gain, input to output	VG	The voltage gain from an input to the corresponding +/- outputs.*2		9		dB
Slew rate	SR	(Design guarantee value *1)		0.15		V/μs
Muting on voltage	V_{MUTE}	The voltage at which the output on/off state changes		1.2		V
Power Supply Block (Using a 2SB632K)						
3.3V power supply voltage		$I_O = 200\text{mA}$	3.13	3.3	3.47	V
Line regulation	ΔV_{OLIN}	$4.6\text{V} \leq V_{CC} \leq 12\text{V}$		40	100	mV
Load regulation	ΔV_{OLOAD}	$5\text{mA} \leq I_O \leq 200\text{mA}$		50	150	mV
Reset Block						
RESET pin high-level voltage	V_{ORH}		3.08	3.25	3.42	V
RESET pin low-level voltage	V_{ORL}	$ISRL = 2\text{mA}$, Cd-GND		100	200	mV
RESET pin threshold voltage	V_{RT}	*4		2.8		V
RESET pin hysteresis	V_{HYS}	*5	40	80	160	mV
RESET pin output delay time	td	$Cd = 0.1\mu\text{F}$		10		ms

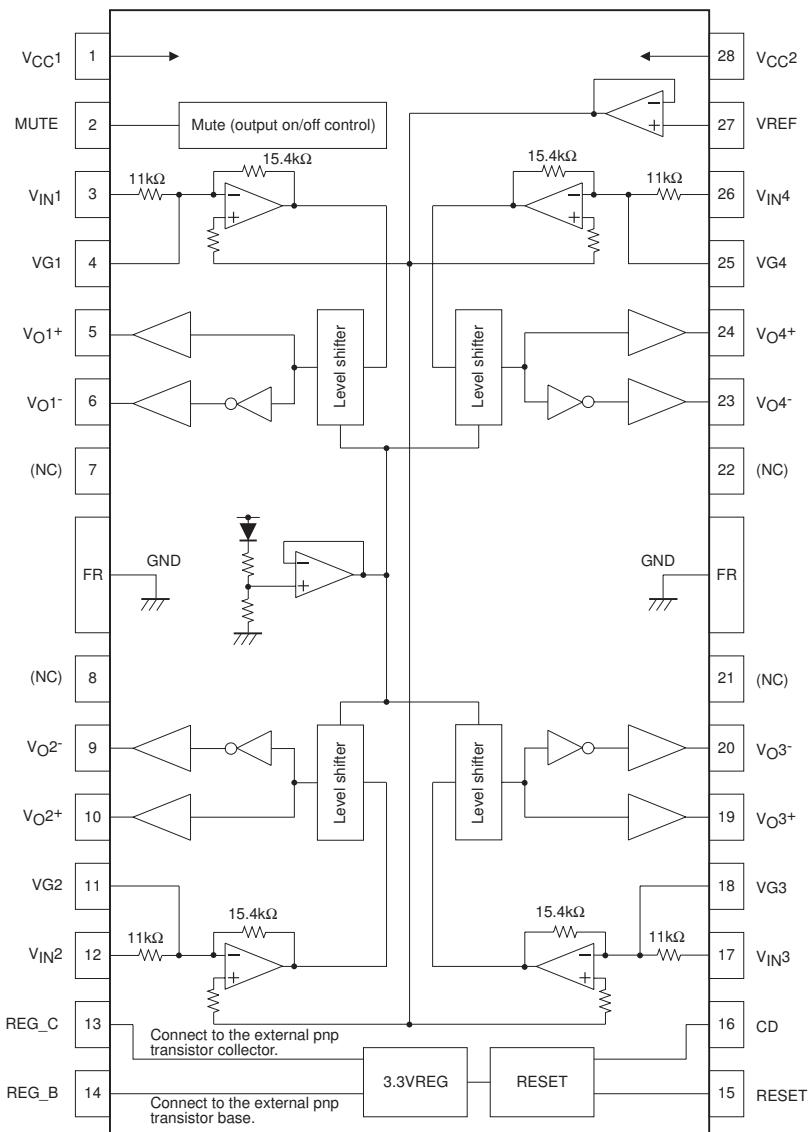
*1 : These parameters are not tested.

2 : The gain from input to output when only the V_{IN}^ pins are used.

*3 : The MUTE pin voltage when the output changes between the on and off states. When the MUTE pin is high, all the BTL amplifiers will be on, and when MUTE is low, all the BTL amplifiers will be off.



*4 : The 3.3V regulator voltage when the RESET pin goes from high to low.

*5 : The 3.3V regulator voltage difference between the RESET pin going from high to low and the RESET pin going from low to high. That is, the hysteresis.

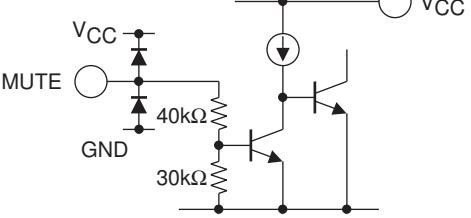
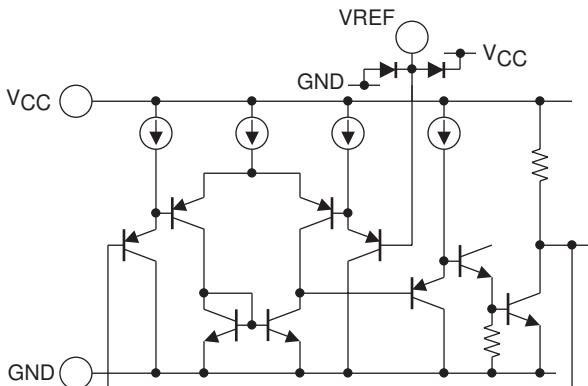
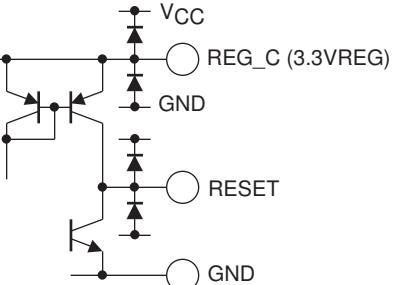
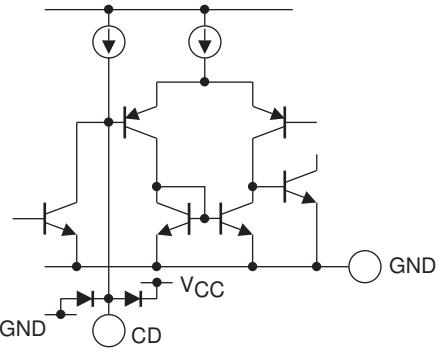

Package Dimensions

unit : mm (typ)

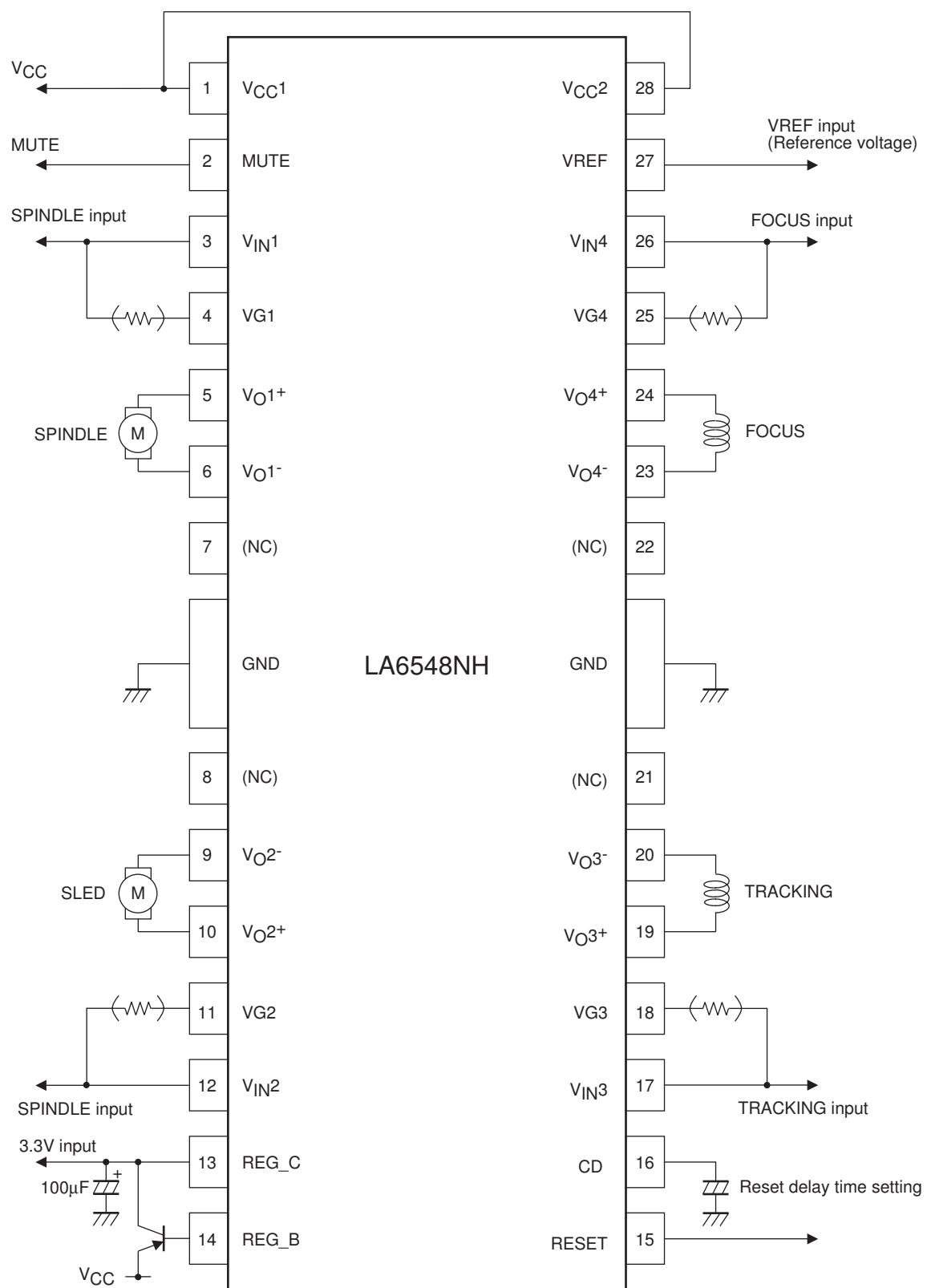
3233B

Block Diagram

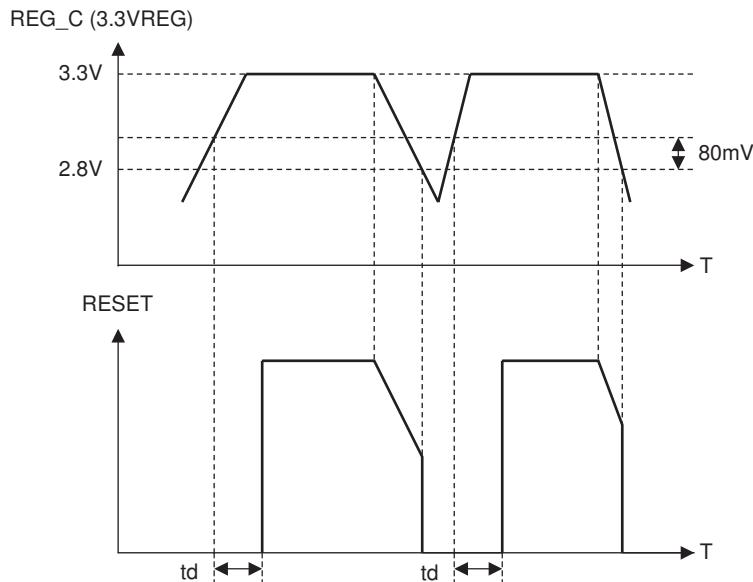
Pin Functions





Pin No.	Pin	Description
1	V _{CC1}	Power supply (This pin is shorted to V _{CC2} (pin 28))
2	MUTE	Output on/off control
3	V _{IN1}	Channel 1 input
4	VG1	Channel 1 input (Gain setting)
5	V _{O1} ⁺	Channel 1 output (+)
6	V _{O1} ⁻	Channel 1 output (-)
7	(NC)	(This pin must not be used.)
8	(NC)	(This pin must not be used.)
9	V _{O2} ⁻	Channel 2 output (-)
10	V _{O2} ⁺	Channel 2 output (+)
11	VG2	Channel 2 input (Gain setting)
12	V _{IN2}	Channel 2 input
13	REG_C	Connect this pin to the external pnp transistor collector. (This is the 3.3V regulator output)
14	REG_B	Connect this pin to the external pnp transistor base.
15	RESET	Reset output
16	CD	Connection for the reset delay time setting capacitor
17	V _{IN3}	Channel 3 input
18	VG3	Channel 3 input (Gain setting)
19	V _{O3} ⁺	Channel 3 output (+)
20	V _{O3} ⁻	Channel 3 output (-)
21	(NC)	(This pin must not be used.)
22	(NC)	(This pin must not be used.)
23	V _{O4} ⁻	Channel 4 output (-)
24	V _{O4} ⁺	Channel 4 output (+)
25	VG4	Channel 4 input (Gain setting)
26	V _{IN4}	Channel 4 input
27	VREF	Reference voltage input
28	V _{CC2}	Power supply (This pin is shorted to V _{CC1} (pin 1))

Equivalent Circuits


Pin No.	Pin	Description	Equivalent circuit
3	V _{IN1}	Input pins.	
4	VG1		
12	V _{IN2}		
11	VG2		
17	V _{IN3}		
18	VG3		
26	V _{IN4}		
25	VG4		
5	V _{O1} ⁺	Output pins.	
6	V _{O1} ⁻		
10	V _{O2} ⁺		
9	V _{O2} ⁻		
19	V _{O3} ⁺		
20	V _{O3} ⁻		
24	V _{O4} ⁺		
23	V _{O4} ⁻		

Continued on next page.


Continued from preceding page.

Pin No.	Pin	Description	Equivalent circuit
2	MUTE	Muting control input. The outputs will be on when the MUTE pin is at the high level. The outputs will be off when the MUTE pin is at the low level ; in particular, the outputs go to the high-impedance state at this time.	
27	VREF	Reference voltage input.	
15	RESET	Reset output. When REG C (3.3VREG) is high, RESET will be high. When REG C (3.3VREG) is low, RESET will be low. Details of Operating voltage see section Reset operation.	
16	CD	Reset output delay time setting. The delay time until the point the reset output switches from low to high is set by the capacitor connected between this pin and ground. Reference to Reset operation.	

Application Circuit Example

Reset Operation

*1 : t_d is the delay time. It is set by an external capacitor connected between the CD pin and ground).

*2 : The voltage at which RESET changes state is a typical value (voltage).

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.