RICOH

R3119N SERIES

36V INPUT VOLTAGE DETECTOR

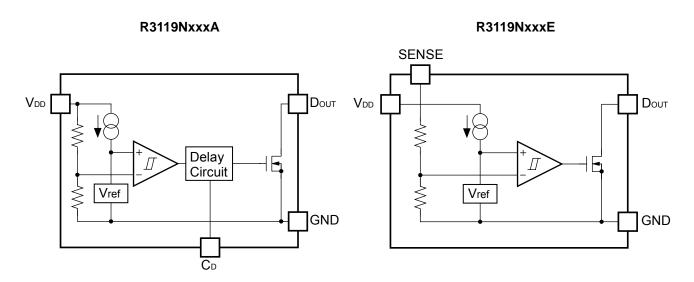
NO.EA-187-111104

OUTLINE

R3119N Series are CMOS-based 36V input (absolute maximum ratings: 50V) voltage detector with high detector threshold accuracy and ultra-low supply current. Each of those ICs consists of a voltage reference unit, a comparator, resistors for detector threshold setting, an output driver and a hysteresis circuit.

There are two types: R3119NxxxA has the C_D pin for setting the output delay time. R3119NxxxE has the SENSE pin.

The supply current of IC is only 3.3μ A. The detector threshold is fixed in the IC and can be set with a step of 0.1V in the range of 2.3V to 12V. Detector threshold accuracy is 1.5%. The output type is Nch Open drain type. Since the package for these ICs is small SOT-23-5, high density mounting of the ICs on board is possible.


FEATURES

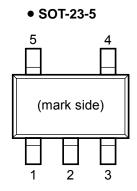
Supply Current	Τyp. 3.3μA
Operating Voltage Range	1.2V to 36.0V (C _D pin type: R3119NxxxA)
	2.1V to 6.0V (SENSE pin type: R3119NxxxE)
Operating Temperature Range	40°C to 105°C
Detector Threshold Range	2.3V to 12.0V (0.1V steps)
	(For other voltages, please refer to MARK INFORMATIONS.)
Detector Threshold Accuracy	±1.5% (Topt=25°C)
Temperature-Drift Coefficient of Detector Threshold	∃Typ. ±100ppm/°C
• Output Delay Time (Power ON Reset Delay Time)	Typ. 85ms (C⊳=0.01μF, C⊳ pin type)
Output Delay Time Accuracy	50% to 80% (C _□ pin type: R3119NxxxA)
Output Type	Nch Open Drain
Package	SOT-23-5

APPLICATIONS

- · CPU and Logic Circuit Reset
- · Battery Checker
- · Battery Back-up Circuit
- Power Failure Detector for Digital home appliances

BLOCK DIAGRAMS

SELECTION GUIDE


The package type, the detector threshold and the version for the ICs can be selected at the users' request.

Product Name	Package	Quantity per Reel	Pb Free	Halogen Free
R3119Nxxx*-TR-FE	SOT-23-5	3,000 pcs	Yes	Yes

xxx: The detector threshold can be designated in the range from 2.3V(023) to 12.0V(120) in 0.1V steps. (For other voltages, please refer to MARK INFORMATIONS.)

- * : Designation of Version
 - (A) with C_D pin type
 - (E) with SENSE pin type

PIN CONFIGURATIONS

PIN DESCRIPTIONS

• SOT-23-5

Pin No.	Symbol		Description					
1	V _{DD}	Input Pin						
2	GND*	Ground Pin						
3	GND*	Ground Pin	Pround Pin					
4	D ouт	Output Pin ("	Output Pin ("L" at detection)					
5	С	R3119NxxxA	Connecting pin with external capacitor for setting delay time					
3	SENSE	R3119NxxxE Voltage Detector Voltage Sense Pin						

^{*)} No. 2 and No.3 pins must be wired to the GND plane when it is mounted on board.

ABSOLUTE MAXIMUM RATINGS

Symbol	Item	Rating	Unit	
V _{DD}	Supply Voltage	R3119NxxxA	-0.3 to 50.0	V
V DD	Supply Vollage	R3119NxxxE	-0.3 to 7.0	v
V out	Output Voltage (Dout Pin)	Output Voltage (Dout Pin)		
VcD	Output Voltage (C _D Pin)	R3119NxxxA	-0.3 to 7.0	V
Vsense	Input Voltage (SENSE Pin)	R3119NxxxE	-0.3 to 50.0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Іоит	Output Current (Dout Pin)		20	mA
PD	Power Dissipation (SOT-23-5)*		420	mW
Topt	Operating Temperature Range		-40 to 105	°C
Tstg	Storage Temperature Range		-55 to 125	°C

^{*)} For Power Dissipation, please refer to PACKAGE INFORMATION.

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field.

The functional operation at or over these absolute maximum ratings is not assured.

ELECTRICAL CHARACTERISTICS

• R3119NxxxA (C_D pin type)

The sp	ecification in	 is checked	d and d	guaranteed	d by desig	n engineering	at -40°C	≤ Topt	≤ 105°C.

Topt=25°C

Symbol	Item	С	ondition	าร	Min.	Тур.	Max.	Unit
-V _{DET}	Detector Threshold	V _{DD} pin	Topt=25	5°C	×0.985		×1.015	V
- V DET	Detector Trireshold	V DD PIII	-40°C	$-40^{\circ}C \leq Topt \leq 105^{\circ}C$			×1.020	
V _{HYS}	Detector Threshold Hysteresis				3.5	5	6.5	%
Iss	Supply Current	V _{DD} = -V _{DET} -0.1	V			3.3	5.6	μА
155	оприу оптент	V _{DD} = -V _{DET} +1.0	V			3.3	5.5	μΑ
V _{DDH}	Maximum Operating Voltage						36	V
VDDL	Minimum Operating	Topt=25°C				1.2	V	
V DDL	Voltage [*]	-40°C ≤ Topt ≤	$-40^{\circ}C \le Topt \le 105^{\circ}C$				1.25	V
		V _{DD} =1.5V, V _{DS} =0.05V			230			μА
	Output Current	2.3V ≤ -V _{DET} <	2.6V	V _{DD} =2.2V V _{DS} =0.5V	2.8			
Іоит	(Driver Output Pin)	2.6V ≤ -V _{DET} <	3.0V	V _{DD} =2.5V V _{DS} =0.5V	3.3			mA
		3.0V ≤ -V _{DET}		V _{DD} =2.9V V _{DS} =0.5V	3.5			
ILEAK	Nch Driver Leakage Current	VDD=36V, VDS=6.0V					0.2	μА
Δ -V _{DET} / Δ Topt	Detector Threshold Temperature Coefficient	$-40^{\circ}C \le T_{opt} \le 105^{\circ}C$				±100		ppm /°C
tdelay	Detector Output Delay Time	$V_{DD}=1.5V \rightarrow -V_{DD}=0.01 \mu F$	/ _{DET+} 2.0\	/	45	85	150	ms

All of unit are tested and specified under load conditions such that Tj≈Topt=25°C except for Detector Threshold Temperature Coefficient.

*) This value is the minimum input voltage when the output voltage is 0.1V or less at detection. (The pull-up resistance; $100k\Omega$, the pull-up voltage; 5.0V)

RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

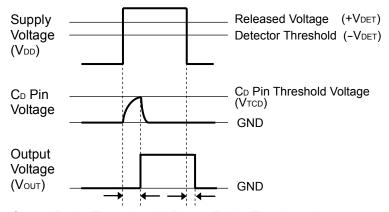
R3119N

• R3119NxxxE (SENSE pin type)

The specification in \square is checked and guaranteed by design engineering at $-40^{\circ}\text{C} \le \text{Topt} \le 105^{\circ}\text{C}$.

Topt=25°C

Symbol	Item	Conditions			Min.	Тур.	Max.	Unit
V _{DD}	Operating Voltage				2.1*		6	V
-V _{DET}	Detector Threshold	SENSE pin Topt=25°C		×0.985		×1.015	V	
-VDET	Detector Threshold	V _{DD} =6V	-40°C :	≤ Topt ≤ 105°C	×0.970		×1.020	\ \ \
V _{HYS}	Detector Threshold Hysteresis	V _{DD} =6V			3.5	5	6.5	%
Iss	Supply Current	VDD=6V, VSENSE	E= -VDET-	0.1V		3.3	5.5	
155	Зарріу Сапені	V _{DD} =6V, V _{SENSE} = -V _{DET} +1.0V				3.3	5.5	μΑ
RSENSE	Sense Resistor				4.5		120	ΜΩ
Output Current		V _{SENSE} < -V _{DET}		V _{DD} =2.1V V _{DS} =0.05V	420			μΑ
1001	(Driver Output Pin)	V _{SENSE} < -V _{DET}		V _{DD} =2.2V V _{DS} =0.5V	2.8			mA
ILEAK	Nch Driver Leakage Current	V _{DD} =6V, V _{SENSE} =36V, V _{DS} =6.0V					0.2	μΑ
Δ -V _{DET} / Δ Topt	Detector Threshold Temperature Coefficient	$-40^{\circ}C \leq Topt \leq 105^{\circ}C$				±100		ppm /°C
t pLH	Output Delay Time	$V_{DD}=6V$ $V_{SENSE}=1.5V \rightarrow -V_{DET}+2.0V$				15		μS
Vsense	Input Voltage (SENSE Pin)				0		36	V


All of unit are tested and specified under load conditions such that Tj≈Topt=25°C except for Detector Threshold Temperature Coefficient and Output Delay Time.

*) Minimum operating voltage of "SENSE pin type" is minimum supply voltage to obtain correct detection voltage.

RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)

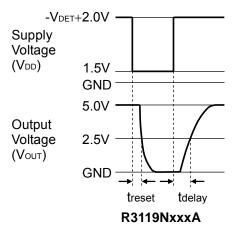
All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

TIMING CHART

Output Delay Time (tdelay) Detect Delay Time (treset)

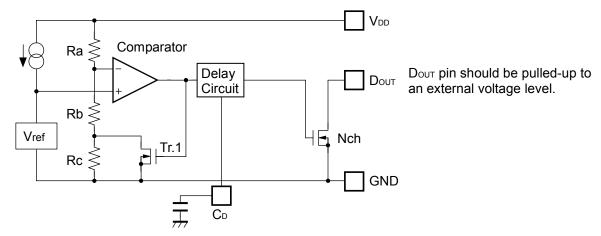
When the supply voltage, which is higher than released voltage, is forced to V_{DD} pin, charge to an external capacitor starts, then C_{D} pin voltage increases. Until the C_{D} pin voltage reaches to C_{D} pin threshold voltage, output voltage maintains "L". When the C_{D} pin voltage becomes higher than C_{D} pin threshold voltage, output voltage is reversed from "L" to "H". Where the time interval between the rising edge of supply voltage and output voltage reverse point means output delay time.

When the output voltage reverses from "L" to "H", the external capacitor starts to discharge. Therefore, when lower voltage than the detector threshold voltage is forced to V_{DD} pin, the output voltage reverses from "H" to "L" thus the detect delay time is constant not being affected by the external capacitor.

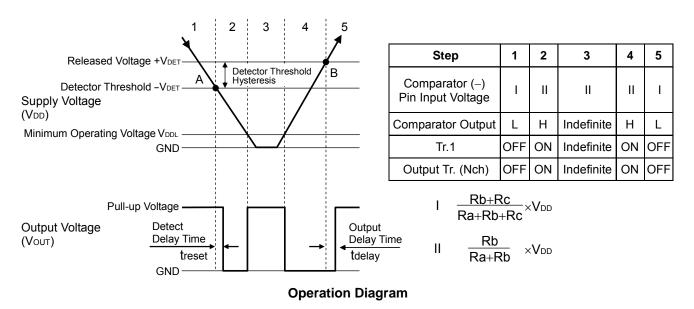

Output Delay Time

Output Delay Time (tdelay) can be calculated with the next formula using the external capacitor: tdelay (s) = $8.5 \times 10^6 \times C_D(F)$

DEFINITION OF OUTPUT DELAY TIME

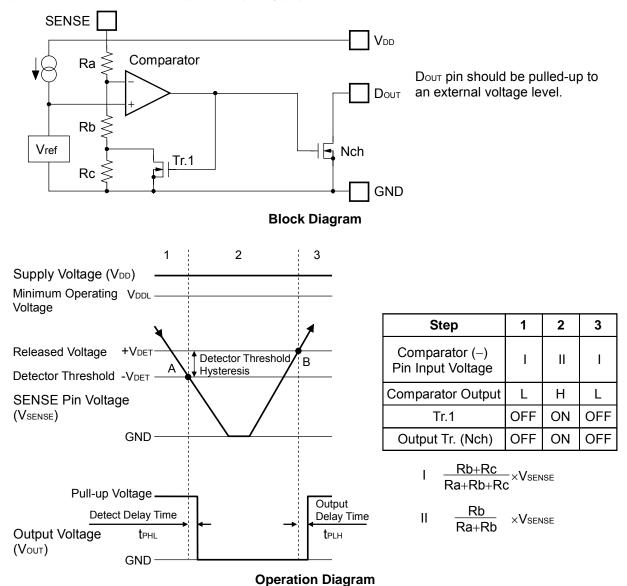

Output Delay Time (tdelay) is defined as follows:

Under the condition of the output pin (DouT) is pulled up through a resistor of $100k\Omega$ to 5V, the time interval between the rising edge of VDD pulse from 1.5V to (-VDET)+2.0V pulse voltage is supplied, the becoming of the output voltage to 2.5V.



OPERATION

• Operation of R3119NxxxA (C_D pin type)


Block Diagram of External Capacitor Connection

Explanation of operation

- Step 1. The output voltage is equal to the pull-up voltage.
- Step 2. At Point "A", Vref ≥ Vdd×(Rb+Rc)/(Ra+Rb+Rc) is true, as a result, the output of comparator is reversed from "L" to "H", therefore the output voltage becomes the GND level. The voltage level of Point A means a detector threshold voltage (-Vdet).
- Step 3. When the supply voltage is lower than the minimum operating voltage, the operation of the output transistor becomes indefinite. The output voltage is equal to the pull-up voltage.
- Step 4. The output voltage is equal to the GND level.
- Step 5. At Point "B", Vref ≤ VDD×Rb/(Ra+Rb) is true, as a result, the output of comparator is reversed from "H" to "L", then the output voltage is equal to the pull-up voltage. The voltage level of Point B means a released voltage (+VDET).
- *) The difference between a released voltage and a detector threshold voltage is a detector threshold hysteresis.

Operation of R3119NxxxE (SENSE pin type)

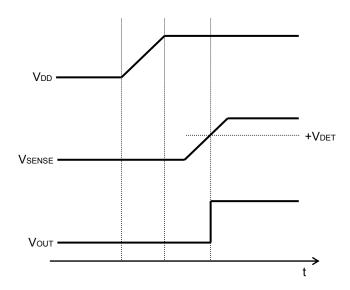
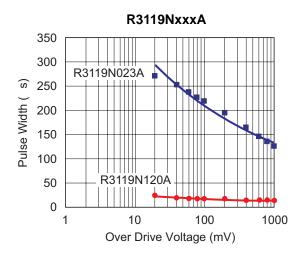
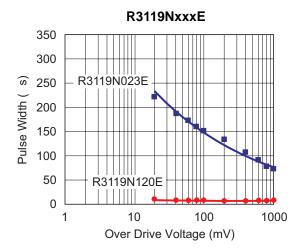
Explanation of operation

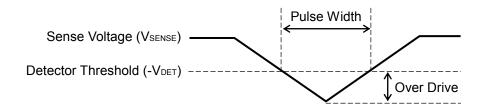
- Step 1. SENSE pin voltage is larger than detector threshold; the output voltage is equal to the pull-up voltage.
- Step 2. At Point "A", Vref ≥ Vsense×(Rb+Rc)/(Ra+Rb+Rc) is true, as a result, the output of comparator is reversed from "L" to "H", therefore the output voltage becomes the GND level. The voltage level of Point A means a detector threshold voltage (-VDET). (When the supply voltage is higher than the minimum operating voltage, the output voltage is equal to the GND level.)
- Step 3. At Point "B", Vref ≤ Vsense×Rb/(Ra+Rb) is true, as a result, the output of comparator is reversed from "H" to "L", then the output voltage is equal to the pull-up voltage. The voltage level of Point B means a released voltage (+VDET).
- *) The difference between a released voltage and a detector threshold voltage is a detector threshold hysteresis.

Power supply injection order

The R3119NxxxE Series supervise the voltage of the SENSE pin. V_{DD} pin and SENSE pin can be used at the same voltage level. Likewise, V_{DD} pin and SENSE pin can be used at the different voltage level. If the V_{DD} pin and SENSE pin are used at different voltage level, regarding the start-up sequence, force the voltage level to V_{DD} pin prior to the SENSE pin.

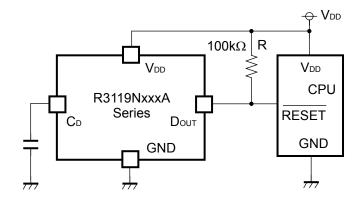
If the SENSE pin voltage is equal or more than the released voltage ($+V_{DET}$), D_{OUT} pin becomes "H"(Fig.1). Besides, a voltage beyond V_{DD} pin is also acceptable to SENSE pin.

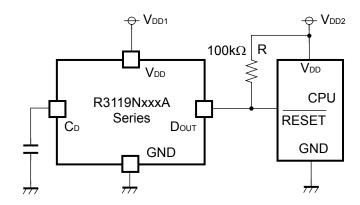

Fig.1 Turn on sequence

Detector Operation vs. glitch input voltage to the VDD pin or SENSE pin

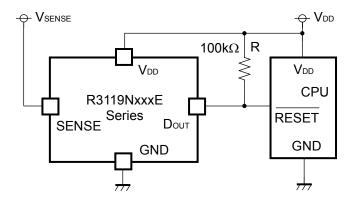
When the R3119N is at released, if the pulse voltage which the detector threshold or lower voltage, the graph below means that the relation between pulse width and the amplitude of the swing to keep the released state for the R3119N.

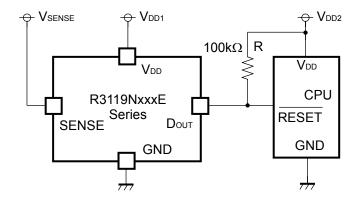


VSENSE Input Waveform

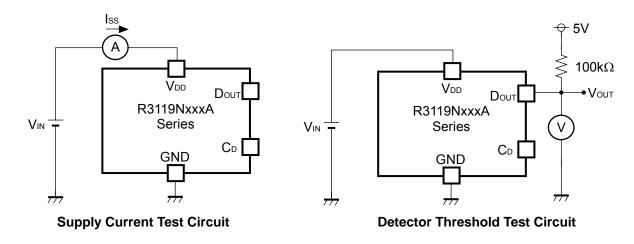

This graph shows the maximum pulse conditions to keep the released voltage. If the pulse with larger amplitude or wider width than the graph above, is input to the V_{DD} pin (R3119NxxxA) or to the SENSE pin (R3119NxxxE), the reset signal may be output.

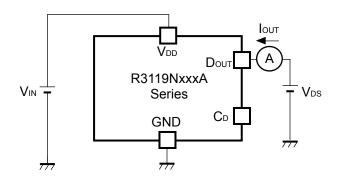
TYPICAL APPLICATION

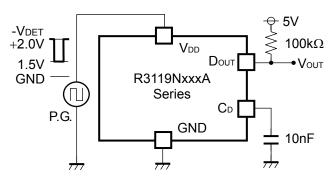

- R3119NxxxA (C_D pin type)
- (1) Input Voltage to R3119NxxxA is equal to Input Voltage to CPU


(2) Input Voltage to R3119NxxxA is unequal to Input Voltage to CPU

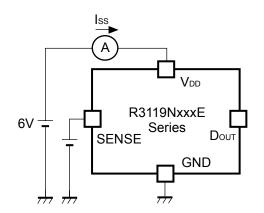
- R3119NxxxE (SENSE pin type)
- (1) Input Voltage to R3119NxxxE is equal to Input Voltage to CPU

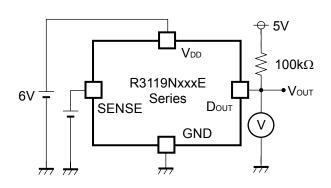



(2) Input Voltage to R3119NxxxE is unequal to Input Voltage to CPU

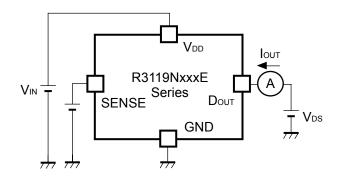

TEST CIRCUITS

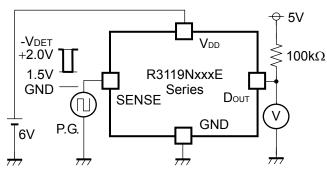
• R3119NxxxA (C_D pin type)



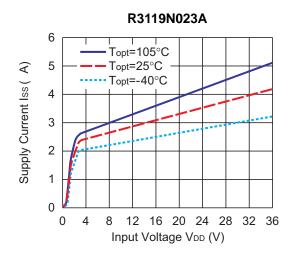


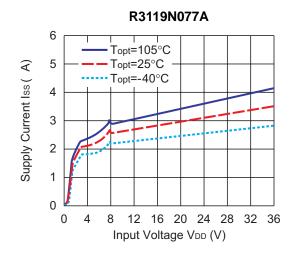
Output Delay Time Test Circuit

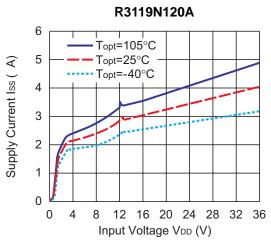

• R3119NxxxE (SENSE pin type)


Supply Current Test Circuit

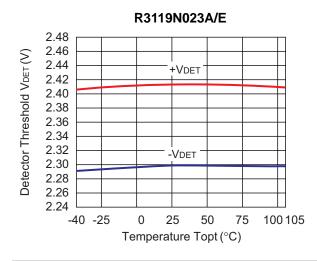
Detector Threshold Test Circuit

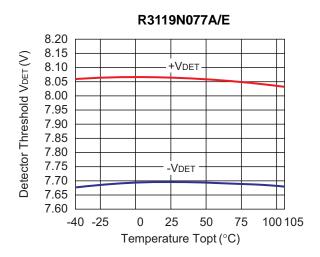

Nch Driver Output Current Test Circuit

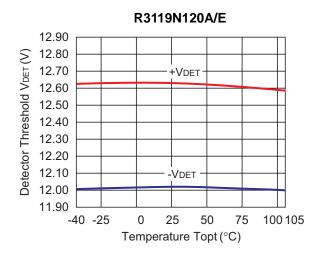



Output Delay Time Test Circuit

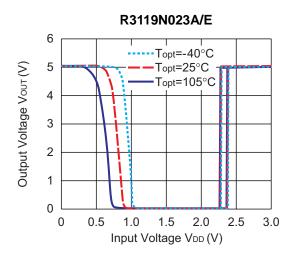
TYPICAL CHARACTERISTICS

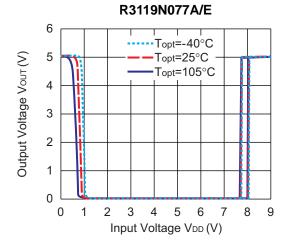

1) Supply Current vs. Input Voltage

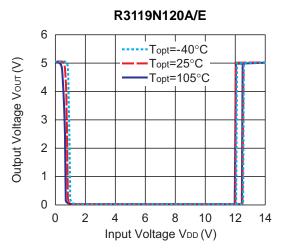


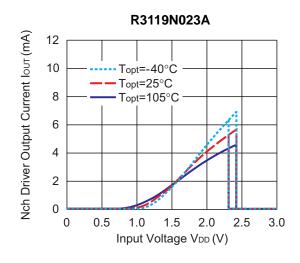


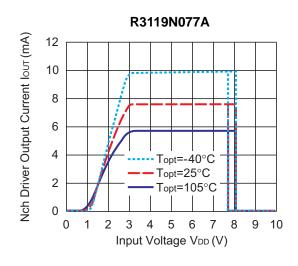
2) Detector Threshold vs. Temperature

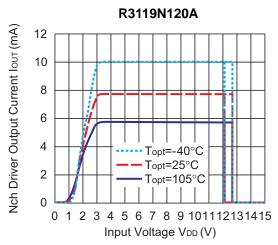


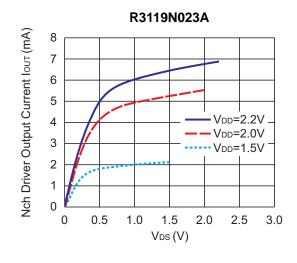


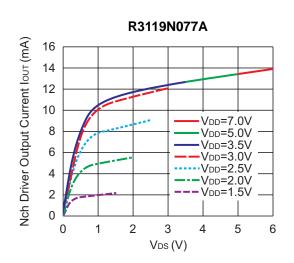

R3119N

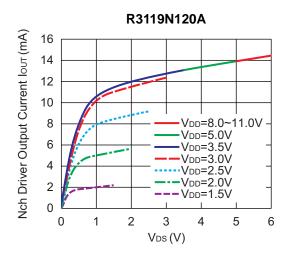

3) Output Voltage vs. Input Voltage



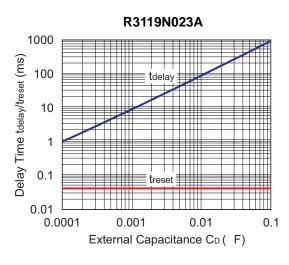


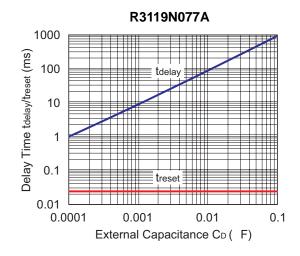

4) Nch Driver Output Current vs. Input Voltage

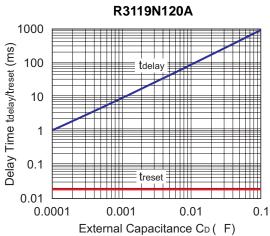




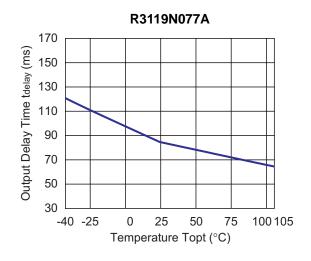
5) Nch Driver Output Current vs. VDS

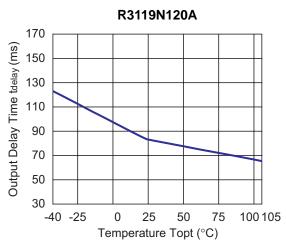


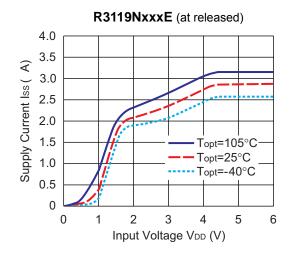


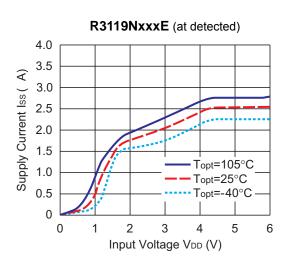

R3119N

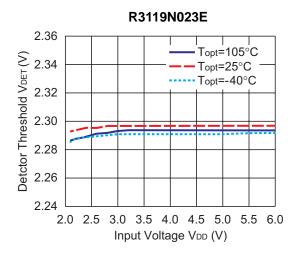
6) Output Delay Time vs. External Capacitance (Topt=25°C)

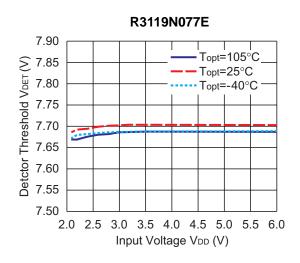


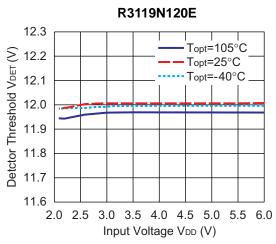


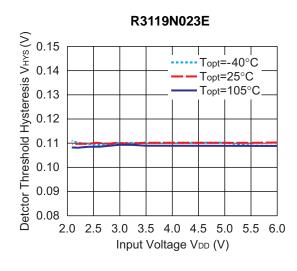

7) Output Delay Time vs. Temperature (CD=0.01μF)

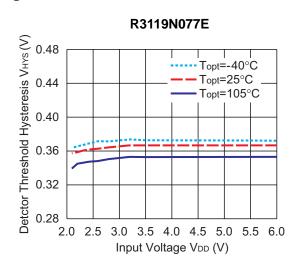


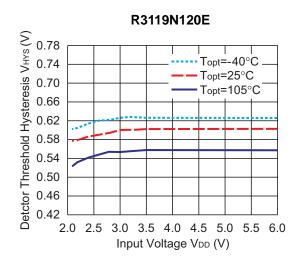


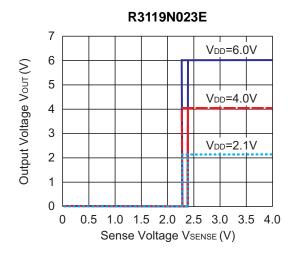

8) Supply Current vs. Input Voltage

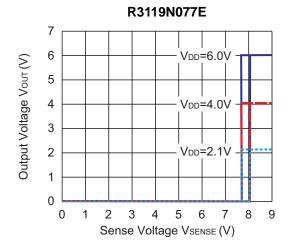


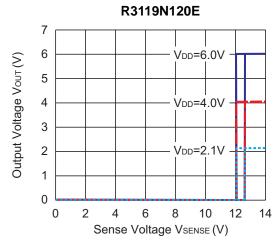

9) Detector Threshold vs. Input Voltage

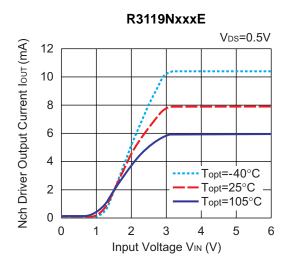


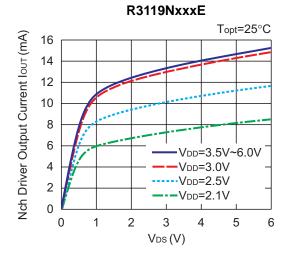



10) Detector Threshold Hysteresis vs. Input Voltage



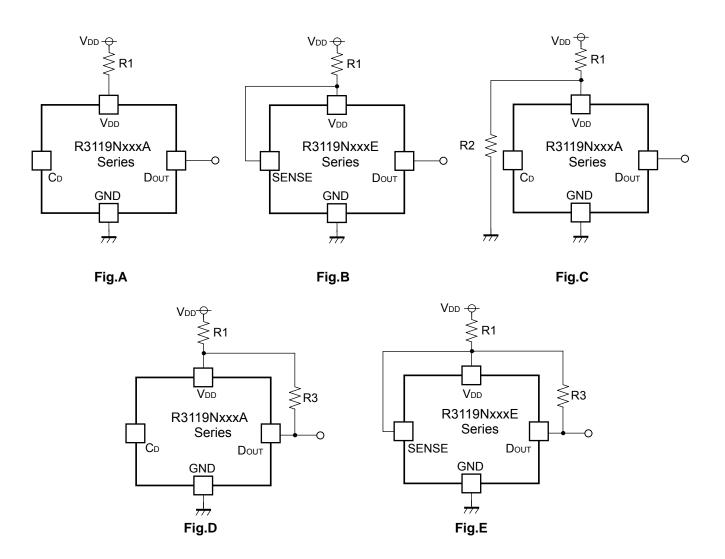



11) Output Voltage vs. SENSE pin Input Voltage (Topt=25°C) (Dout pull up to VDD with 100kΩ)



12) Nch Driver Output Current vs. Input Voltage

13) Nch Driver Output Current vs. VDS



TECHNICAL NOTES

When R3119NxxxA/E is used in Fig.A, Fig.B, if the value of R1 is set excessively large, the dropdown voltage caused by the consumption current of IC itself, may vary the detector threshold and the release voltage. Also, if the value of R1 is set excessively large, there may be delay in start-up and may cause oscillation generated by cross conduction current.

When R3119NxxxA is used in Fig.C, if the value of R1 is set excessively large, the dropdown voltage caused by the consumption current of IC itself, may vary the detector threshold and the released voltage. Also, if the value of R1 and R2 is set excessively large, there may be delay in start-up and may cause oscillation generated by cross conduction current.

When R3119NxxxA/E is used in Fig.D, Fig.E, if the value of R1 is set excessively large, the dropdown voltage caused by the consumption current of IC itself may vary the detector threshold and the release voltage. Also, if the value of R1 is set excessively large, there may be delay in start-up and may cause oscillation generated by cross conduction current. Furthermore, if the value of R1 is set large and the value of R3 is set small, released voltage level may shift and the minimum operating voltage may differ. If the value of R3 is set excessively small from R1, release may not occur and may cause oscillation.

- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
- 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
- 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, firecontainment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. Anti-radiation design is not implemented in the products described in this document.
- 8. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

RICOH COMPANY., LTD. Electronic Devices Company

■Ricoh presented with the Japan Management Quality Award for 1999. Ricoh continually strives to promote customer satisfaction, and shares the achievements of its management quality improvement program with people and society

■Ricoh awarded ISO 14001 certification.

The Ricoh Group was awarded ISO 14001 certification, which is an international standard for environmental management systems, at both its domestic and overseas production facilities. Our current aim is to obtain ISO 14001 certification for all of our business offices.

http://www.ricoh.com/LSI/

RICOH COMPANY, LTD. **Electronic Devices Company**

 Higashi-Shinagawa Office (International Sales) 3-32-3, Higashi-Shinagawa, Shinagawa-ku, Tokyo 14 Phone: +81-3-5479-2857 Fax: +81-3-5479-0502

RICOH EUROPE (NETHERLANDS) B.V.

 Semiconductor Support Centre
 Prof. W.H.Keesomlaan 1, 1183 DL Amstelveen, The Netherlands Prof. W.H.Keesomlaan 1, 1183 DL Amstelveen, The P.O.Box 114, 1180 AC Amstelveen Phone: +31-20-5474-309 Fax: +31-20-5474-791

RICOH ELECTRONIC DEVICES KOREA Co., Ltd. 11 floor, Haesung 1 building, 942, Daechidong, Gangnamgu, Seoul, Kore Phone: +82-2-2135-5700 Fax: +82-2-2135-5705

RICOH ELECTRONIC DEVICES SHANGHAI Co., Ltd. Room403, No.2 Building, 690#Bi Bo Road, Pu Dong New district, Shanghai 201203, People's Republic of China Phone: +86-21-5027-3200 Fax: +86-21-5027-3299

RICOH COMPANY, LTD. Electronic Devices Company Taipei office

Room109, 10F-1, No.51, Hengyang Rd., Taipei City, Taiwan (R.O.C.) Phone: +886-2-2313-1621/1622 Fax: +886-2-2313-1623

Ricoh completed the organization of the Lead-free production for all of our products. After Apr. 1, 2006, we will ship out the lead free products only. Thus, all products that will be shipped from now on comply with RoHS Directive.