RICOH

R1218x SERIES

Step-up DC/DC converter for White LED Backlight

NO.EA-166-111123

OUTLINE

The R1218x Series are PWM control type step-up DC/DC converter ICs with low supply current.

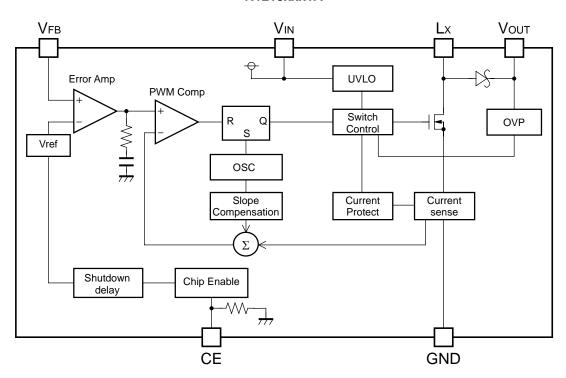
The R1218x is fully dedicated to drive White LED with constant current. Each of these ICs consists of an NMOS FET, an oscillator, a PWM comparator, a voltage reference unit, an error amplifier, a current limit circuit, an under voltage lockout circuit (UVLO), an over-voltage protection circuit (OVP).

The R1218x can drive white LEDs with high efficiency with low supply current. A diode is built-in the R1218xxx1A, therefore it is possible to drive up to 4LEDs without an external diode. The R1218xxx2A, an external diode is necessary, however, up to 7 serial LEDs can be driven with the R1218xxx2A.

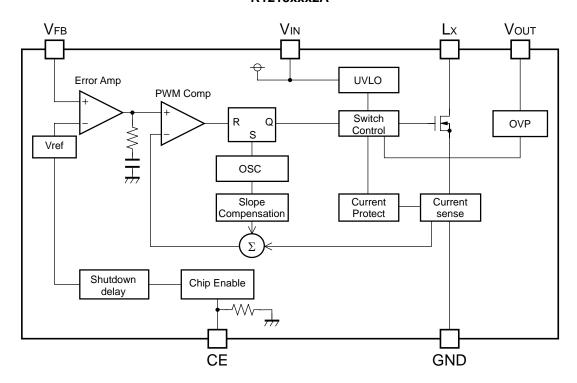
Constant current can be set with an external resistance value. Dimming control is possible by PWM signal for CE pin. Feedback voltage is 0.2V, therefore power loss by current setting resistor is small and efficiency is good. Maximum duty cycle is internally fixed, Typ. 91% to 92%. LEDs can be driven from low voltage. Protection circuits are the current limit of Lx peak current, the over voltage limit of output, and the under voltage lockout function.

Packages are standard SOT-23-6 and very tiny DFN(PLP)1820-6.

FEATURES


 Input voltage
Oscillator Frequency (PWM control)
Maximum Duty Cycle
Feedback VoltageTyp. 0.2V
UVLO Threshold VoltageTyp. 1.6V (Hysteresis Typ. 0.1V)
Lx Current limit ProtectionTyp. 700mA
 Over Voltage Protection (OVP) Threshold Typ. 9.5V (R1218x021A)
Typ. 14.0V (R1218x031A)
Typ. 18.5V (R1218x041A)
Typ. 23.0V (R1218x052A)
Typ. 27.5V (R1218x062A)
Typ. 31.5V (R1218x072A)
• LED dimming control by external PWM signal (Frequency 200Hz to 5kHz) to CE pin
by feedback voltage and filtered PWM signal (high frequency)
 Packages DFN(PLP)1820-6, SOT-23-6

APPLICATION


• White LED Backlight for portable equipment

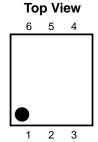
BLOCK DIAGRAMS

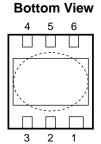
R1218xxx1A

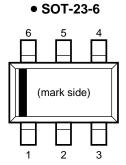
R1218xxx2A

SELECTION GUIDE

The OVP threshold, the built-in diode, and the package for the ICs can be selected at the user's request.


Product Name Package		Quantity per Reel	Pb Free	Halogen Free	
R1218Kxxxx-TR	DFN(PLP)1820-6	5,000 pcs	Yes	Yes	
R1218Nxxxx-TR-FE	SOT-23-6	3,000 pcs	Yes	Yes	


xxxx: The combination of the OVP threshold and with/without of built-in diode can be designated.


Code	OVP Threshold	Built-in Diode
021A	9.5V	Yes
031A	14.0V	Yes
041A	18.5V	Yes
052A	23.0V	No
062A	27.5V	No
072A	31.5V	No

PIN CONFIGURATIONS

• DFN(PLP)1820-6

PIN DESCRIPTIONS

• DFN(PLP)1820-6

Pin No	Symbol	Pin Description			
1	CE	Chip Enable Pin ("H" Active)			
2	V _{FB}	Feedback Pin			
3	Lx	Switching Pin (Open Drain Output)			
4	GND	Ground Pin			
5	Vin	Power Supply Input Pin			
6	Vouт	Output Pin			

^{*)} Tab is GND level. (They are connected to the reverse side of this IC.)

The tab is better to be connected to the GND, but leaving it open is also acceptable.

• SOT-23-6

Pin No	Symbol	Pin Description		
1	CE	Chip Enable Pin ("H" Active)		
2	Vоит	Output Pin		
3	Vin	Power Supply Input Pin		
4	Lx	Switching Pin (Open Drain Output)		
5	GND	Ground Pin		
6	V _{FB}	Feedback Pin		

ABSOLUTE MAXIMUM RATINGS

(GND=0V)

Symbol	Item		Rating	Unit	
VIN	V _{IN} Pin Voltage		6.5	V	
Vce	CE Pin Voltage	CE Pin Voltage		V	
V _{FB}	V _{FB} Pin Voltage		-0.3 to V _{IN} +0.3	V	
Vout	V _{оит} Pin Voltage	R1218xxx1A	-0.3 to 22	V	
V 001	voor Fili voltage	R1218xxx2A	-0.3 to 34	ľ	
VLX	Lx Pin Voltage	R1218xxx1A	-0.3 to 22	V	
VLX		R1218xxx2A	-0.3 to 34		
llx	Lx Pin Current		1000	mA	
D.	Power Dissipation (SOT-23-6)*		420	mW	
P _D	Power Dissipation (DFN(PLP)1820-6)*		880	11100	
Topt	Operating Temperature Range		-40 to 85	°C	
Tstg	Storage Temperature Range		-55 to 125	°C	

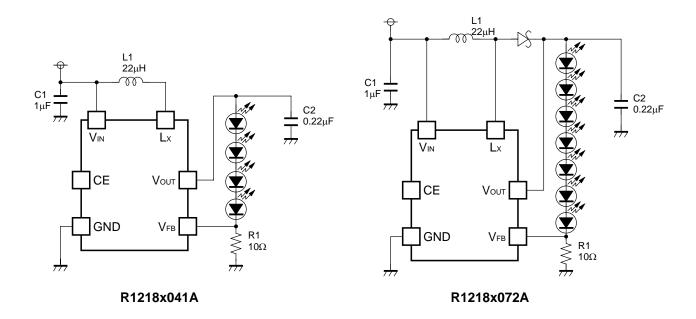
^{*)} For Power Dissipation, please refer to PACKAGE INFORMATION.

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field.

The functional operation at or over these absolute maximum ratings is not assured.

RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)

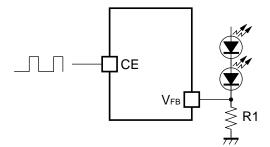

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

ELECTRICAL CHARACTERISTICS

• R1218xxxxA Topt=25°C

Symbol	Item	Conditions		Min.	Тур.	Max.	Unit
VIN	Input Voltage			1.8		5.5	V
IDD	Supply Current	V _{IN} =5.5V, V _{FB} =0V, Lx at no load			0.5	1.0	mA
Istandby	Standby Current	Vin=5.5V, VcE=0V			0	3.0	μΑ
V _{UVLO1}	UVLO Detector Threshold	V _{IN} falling		1.5	1.6	1.7	V
V _{UVLO2}	UVLO Released Voltage	V _{IN} rising			Vuvlo1+0.1	1.8	V
Vceh	CE Input Voltage "H"	VIN=5.5V		1.5			V
Vcel	CE Input Voltage "L"	V _{IN} =1.8V				0.5	V
Rce	CE Pull Down Resistance	VIN=3.6V		600	1200	2200	kΩ
tshtdn	CE Shutdown Delay Time	VIN=3.6V			10		ms
V _{FB}	V _{FB} Voltage	VIN=3.6V		0.19	0.20	0.21	V
ΔV _{FB} / ΔTopt	V _{FB} Voltage Temperature Coefficient	V _{IN} =3.6V, -40°C	\leq Topt \leq 85°C		±150		ppm /℃
l _{FВ}	V _{FB} Input Current	VIN=5.5V, VFB=0	√ or 5.5V	-0.1		0.1	μΑ
Ron	Switch On Resistance	VIN=3.6V, Isw=10	00mA		1.5		Ω
li va - i	Switch Lookage Current	R1218xxx1A	V _L x=20V		0	3.0	μΑ
LXleak	Switch Leakage Current	R1218xxx2A	V _L x=29V		0	3.0	μΑ
LXlim	Switch Current Limit	V _{IN} =3.6V		400	700	1000	mA
Vf	Diode Forward Voltage	R1218xxx1A	DIODE=100mA		0.8		V
DIODEleak	Diode Leakage Current	R1218xxx1A	VOUT=20V, VLX=0V		10		μΑ
fosc	Oscillator Frequency	VIN=3.6V, VOUT=VFB=0V		1.0	1.2	1.4	MHz
Maxduty	Maximum Duty Cycle	VIN=3.6V,	R1218x072A	86	92		- %
Maxadiy	Waximum Buty Oyele	Vout=Vfb=0V	Others	86	91		
			R1218x021A	8.5	9.5	10.5	
			R1218x031A	13.0	14.0	15.0	
V _{OVP1}	OVP Detector Threshold	VIN=3.6V,	R1218x041A	17.0	18.5	20.0	V
VOVPI	OVI Detector Threshold	Vout rising	R1218x052A	21.5	23.0	24.5	
			R1218x062A	26.0	27.5	29.0	
			R1218x072A	30.0	31.5	33.0	
			R1218x021A		Vovp1-0.5		V
			R1218x031A		Vovp1-0.75		
V_{OVP2}	OVP Released Voltage	V _{IN} =3.6V,	R1218x041A		Vovp1-1.0		
V OVP2	OVI Neleased Vollage	Vουτ falling	R1218x052A		Vovp1-1.25		
			R1218x062A		Vovp1-1.5		
			R1218x072A		Vovp1-1.75		

TYPICAL APPLICATIONS

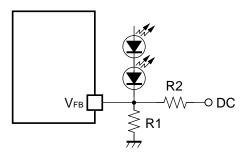

LED Current setting

LED current can be set with feedback resistor(R1) I_{LED} =0.2 / R1

• LED Dimming Control, Softstart

(1) LED dimming control by PWM signal to CE pin LED dimming control is possible by forcing PWM signal to CE pin.

When the power-on or start up with CE pin, softstart function works, however, after that, if the CE pin is set as "L" and set CE pin "H" again during the shutdown delay time, softstart function is disabled and starts up fast to normal mode, therefore 200Hz to 5kHz PWM signal is standard. By the CE pin input, LED turns on and off. Average LED current varies depending on the duty cycle of CE input. Too high frequency PWM signal is not effective because of its delay.

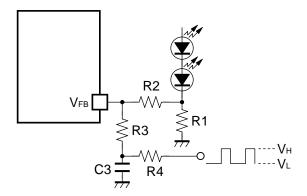

Dimming controle by CE pin input

R1218x

(2) Dimming control by DC voltage

LED dimming control is also possible by using the DC voltage to V_{FB} pin. LED current is adjustable by DC voltage and resistors, R1 and R2 in the following figure.

$$I_{LED}=(DC-0.2)/R2-0.2/R1$$



Dimming control by DC voltage

(3) Dimming control by feedback voltage and filtered PWM signal

LED dimming control is also possible by using the feedback voltage and filtered PWM signal.

LED current is adjustable according to the "H" level (V_H) and "L" level(V_L) of PWM signal and resistors, R1, R2, R3, and R4 in the following figure.

Dimming controle by filtered PWM signal

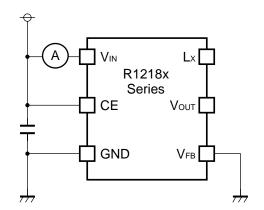
Duty=0% to 100% PWM signal duty cycle can be used up to the maximum LED current and minimum LED current as in the next formulas.

$$\begin{split} &\text{ILEDMIN=} \{0.2 - R2 \times (V_H - 0.2) \ / \ (R3 + R4)\} \ / \ R1 \\ &\text{ILEDMAX=} \{0.2 - R2 \times (V_L - 0.2) \ / \ (R3 + R4)\} \ / \ R1 \end{split}$$

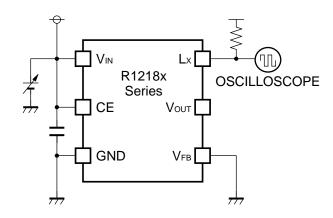
For example, supposed that the PWM signal level is set as 2.5V/0V, to adjust the LED current range from 0mA to 20mA by the duty cycle, our recommendation external components values are, R1=10 Ω , R2=5.1k Ω , R3=51k Ω , R4=5.1k Ω or around.

C3 should be set large enough to regard the PWM signal as adjustable DC voltage by the filter. In this method, higher frequency control than the frequency against the CE pin can be used for dimming control. For example, if the frequency is 40kHz, 0.1µF or more capacitor is our recommendation value as C3.

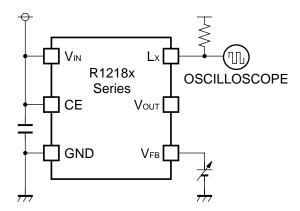
Selection of Inductors

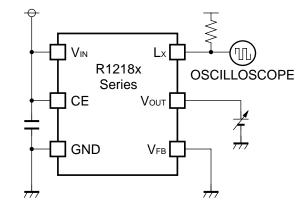

The peak current of the inductor at normal mode can be calculated as next formula: $Lxpeak=1.25 \times LLED \times VOUT / VIN + 0.5 \times VIN \times (VOUT - VIN) / (L \times VOUT \times fosc)$

When the start-up or dimming control by CE pin, transient current flows, the peak current must be equal or less than the current limit of the IC. The peak current should not beyond the rating current of the inductor. For example, for 4 serial LED drive from $V_{IN}=3.6V$, recommendation value of the inductor is $22\mu H$ or more.

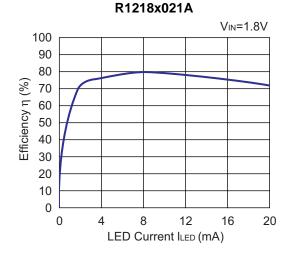

Selection of Capacitors

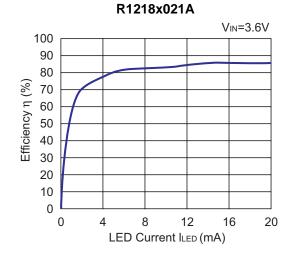
Set $1\mu F$ or more value bypass capacitor C1 between V_{IN} pin and GND pin as close as posible. Set $0.22\mu F$ or more capacitor C2 between V_{OUT} and GND pin.


TEST CIRCUITS


Supply Current Test Circuit

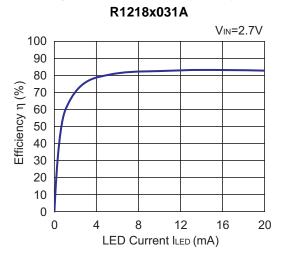
UVLO Detector Threshold, UVLO Released Voltage

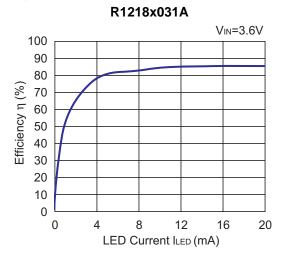

V_{FB} Voltage, Oscillator Frequency, Maximum Duty Test Circuit

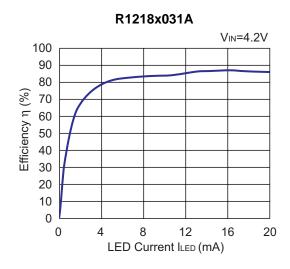


OVP Detector Threshold,
OVP Released Voltage Test Circuit

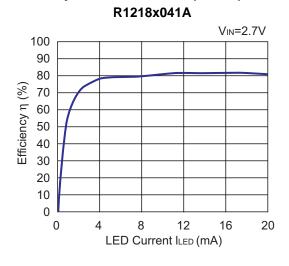
TYPICAL CHARACTERISTICS

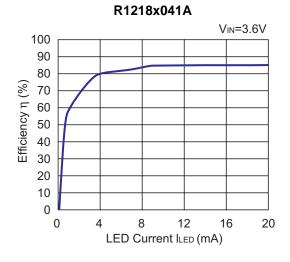

1) Efficiency vs. LED Current (2LED) L:LQH32CN220 (Topt=25°C)

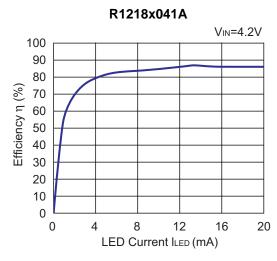


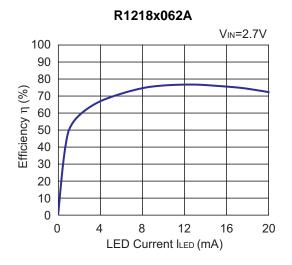


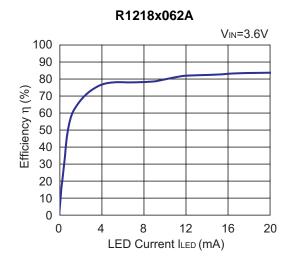
R1218x021A VIN=4.2V Efficiency η (%) LED Current ILED (mA)

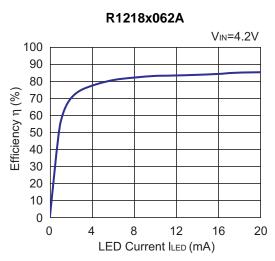

2) Efficiency vs. LED Current (3LED) L: LQH32CN220 (Topt=25°C)



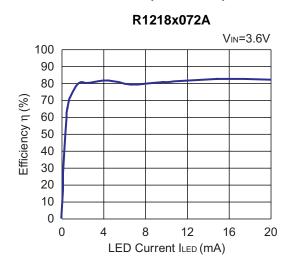


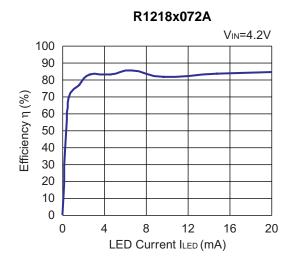

3) Efficiency vs. LED Current (4LED) L: LQH32CN220 (Topt=25°C)



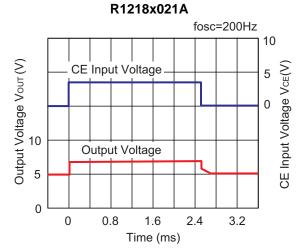


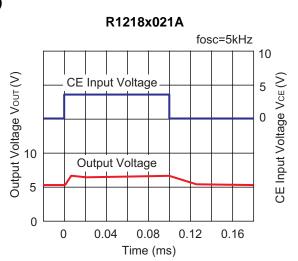
4) Efficiency vs. LED Current (6LED) L: LQH32CN220, Diode: CRS02 (Topt=25°C)



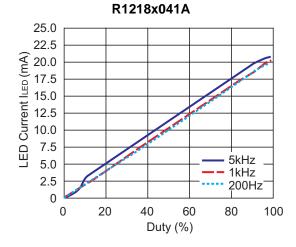


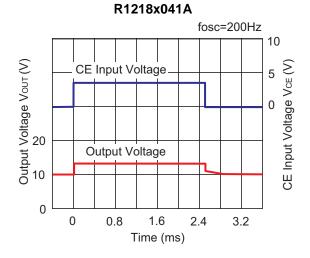
5) Efficiency vs. LED Current (7LED) L: LQH32CN220, Diode: CRS02 (Topt=25°C)



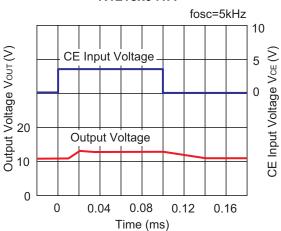


6) PWM Dimming Control (2LED) V_{IN}=3.6V, R1=10Ω 6-1. Duty vs. LED Current (2LED) (Topt=25°C)

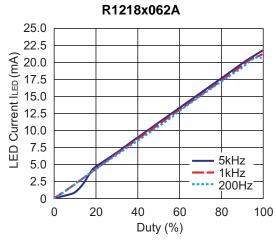

6-2. Output Voltage Waveform (2LED) (Topt=25°C)



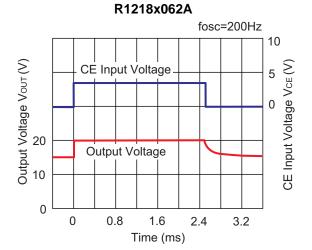
7) PWM Dimming Control (4LED) $V_{IN}=3.6V$, $R1=10\Omega$

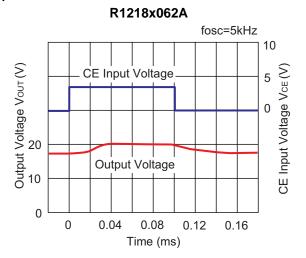

7-1. Duty vs. LED Current (4LED) (Topt=25°C)

7-2. Output Voltage Waveform (4LED) (Topt=25°C)

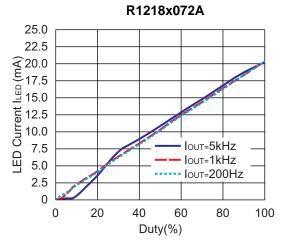


R1218x041A

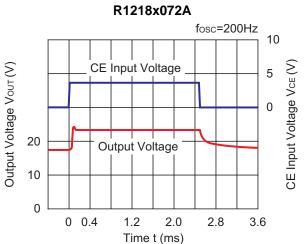


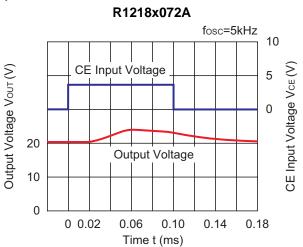

8) PWM Dimming Control (6LED) V_{IN}=3.6V, R1=10 Ω

8-1. Duty vs. LED Current (6LED) (Topt=25°C)

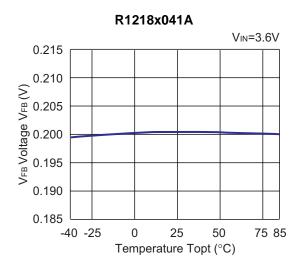


8-2. Output Voltage Waveform (6LED) (Topt=25°C)

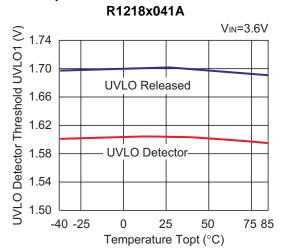


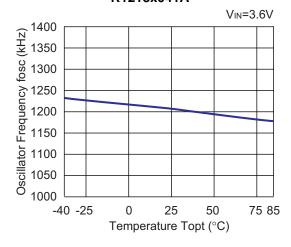


9) PWM Dimming Control (7LED) V_{IN}=3.6V, R1=10Ω9-1. Duty vs. LED Current (7LED) (Topt=25°C)

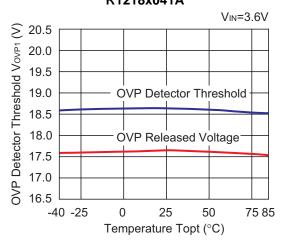


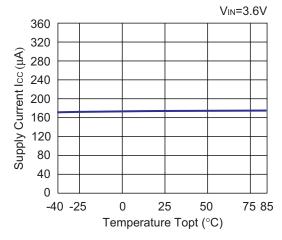
9-2. Output Voltage Waveform (7LED) (Topt=25°C)

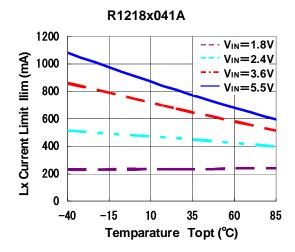


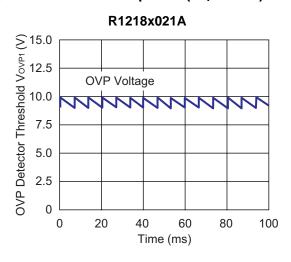

10) VFB Voltage vs. Temperature

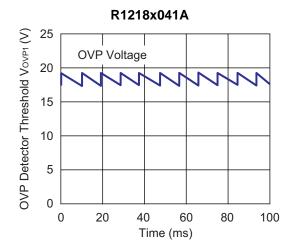
11) UVLO Detector Threshold/Released Voltage vs. Temperature

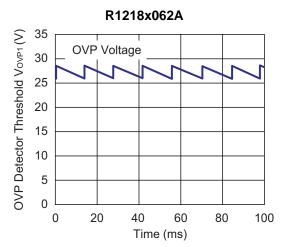

12) Oscillator Frequency vs. Temperature R1218x041A


13) Maximum duty cycle vs. Temperature R1218x041A

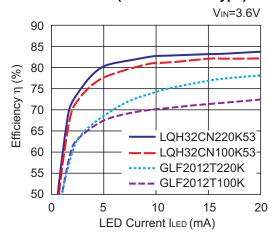

14) OVP Detector Threshold/Released Voltage vs. Temperature R1218x041A


15) Supply Current vs. Temperature R1218x041A




16) Lx Current Limit vs. Temperature

17) OVP Transient Response (Topt=25°C)



18) Efficiency dependence on inductors (4 LED)

R1218x041A (Internal Diode Type)

- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
- 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
- 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, firecontainment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. Anti-radiation design is not implemented in the products described in this document.
- 8. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

RICOH COMPANY., LTD. Electronic Devices Company

■Ricoh presented with the Japan Management Quality Award for 1999. Ricoh continually strives to promote customer satisfaction, and shares the achievements of its management quality improvement program with people and society

■Ricoh awarded ISO 14001 certification.

The Ricoh Group was awarded ISO 14001 certification, which is an international standard for environmental management systems, at both its domestic and overseas production facilities. Our current aim is to obtain ISO 14001 certification for all of our business offices.

http://www.ricoh.com/LSI/

RICOH COMPANY, LTD. **Electronic Devices Company**

 Higashi-Shinagawa Office (International Sales) 3-32-3, Higashi-Shinagawa, Shinagawa-ku, Tokyo 14 Phone: +81-3-5479-2857 Fax: +81-3-5479-0502

RICOH EUROPE (NETHERLANDS) B.V.

 Semiconductor Support Centre
 Prof. W.H.Keesomlaan 1, 1183 DL Amstelveen, The Netherlands Prof. W.H.Keesomlaan 1, 1183 DL Amstelveen, The P.O.Box 114, 1180 AC Amstelveen Phone: +31-20-5474-309 Fax: +31-20-5474-791

RICOH ELECTRONIC DEVICES KOREA Co., Ltd. 11 floor, Haesung 1 building, 942, Daechidong, Gangnamgu, Seoul, Kore Phone: +82-2-2135-5700 Fax: +82-2-2135-5705

RICOH ELECTRONIC DEVICES SHANGHAI Co., Ltd. Room403, No.2 Building, 690#Bi Bo Road, Pu Dong New district, Shanghai 201203, People's Republic of China Phone: +86-21-5027-3200 Fax: +86-21-5027-3299

RICOH COMPANY, LTD. Electronic Devices Company Taipei office

Room109, 10F-1, No.51, Hengyang Rd., Taipei City, Taiwan (R.O.C.) Phone: +886-2-2313-1621/1622 Fax: +886-2-2313-1623

Ricoh completed the organization of the Lead-free production for all of our products. After Apr. 1, 2006, we will ship out the lead free products only. Thus, all products that will be shipped from now on comply with RoHS Directive.