RICOH

R1203x SERIES

STEP-UP DC/DC CONVERTER FOR WHITE LED BACK LIGHT

NO.EA-271-111123

OUTLINE

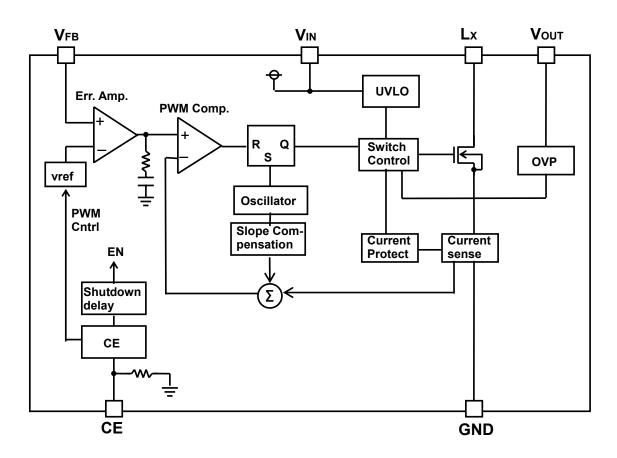
The R1203x Series are PWM control type step-up DC/DC converter ICs with low supply current.

The R1203x is fully dedicated to drive White LEDs with constant current. Each of these ICs consists of an NMOS FET, an oscillator, a PWM comparator, a voltage reference unit, an error amplifier, a current limit circuit, an under voltage lockout circuit (UVLO), and an over-voltage protection circuit (OVP).

The R1203x can drive white LEDs in constant current with high efficiency by using an inductor, a diode, a resistor and capacitors as external components.

The LEDs current can be set by an external resistance value and can adjust the dimming of LEDs by CE pin according to the signal of PWM. Feedback voltage is 0.2V, therefore power loss by current setting resistance is small and efficiency is good. Maximum duty cycle is internally fixed, Typ. 91%. LEDs can be driven from low voltage. Protection circuits are the current limit of Lx peak current, the over voltage limit of output, and the under voltage lockout function.

It is controllable the dimming of LEDs quickly when the PWM signal (between 200Hz to 300kHz) input to CE pin. If the CE pin input is "L" in the fixed time (Typ. 0.5ms), the IC becomes the standby mode and turns OFF LEDs.

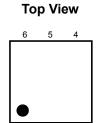

FEATURES

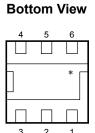
Supply Current	Τyp. 500μA
Standby Current	Max. 5μA
Input Voltage Range	
Feedback Voltage	0.2V
Feedback Voltage Accuracy	±1.0% (±10mV)
• Temperature-Drift Coefficient of Feedback Voltage	±150ppm/°C
Oscillator Frequency	Typ. 1.2MHz
Maximum Duty Cycle	Typ. 91%
Switch ON Resistance	Τyp. 1.35Ω
UVLO Detector Threshold	Typ. 1.6V
Lx Current Limit Protection	Typ. 700mA
OVP Detector Threshold	Typ. 29.5V
Switching Control	PWM
LED dimming control	by external PWM signal (Frequency 200Hz to 300kHz)
Packages	DFN1616-6B, SOT-23-6
Ceramic capacitors are recommended	0.22μF

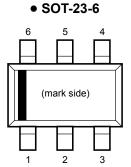
APPLICATION

• White LED Backlight for portable equipment

BLOCK DIAGRAMS


SELECTION GUIDE


The package for the ICs can be selected at the user's request.


Product Name	Package	Quantity per Reel	Pb Free	Halogen Free
R1203L071B-TR	DFN1616-6B	5,000 pcs	Yes	Yes
R1203N071B-TR-FE	SOT-23-6	3,000 pcs	Yes	Yes

PIN CONFIGURATIONS

• DFN1616-6B

PIN DESCRIPTIONS

• DFN1616-6B

Pin No	Symbol	Pin Description
1	CE	Chip Enable Pin ("H" Active)
2	V _{FB}	Feedback Pin
3	Lx	Switching Pin (Open Drain Output)
4	GND	Ground Pin
5	Vin	Input Pin
6	Vouт	Output Pin

^{*)} Tab is GND level. (They are connected to the reverse side of this IC.)

The tab is better to be connected to the GND, but leaving it open is also acceptable.

• SOT-23-6

Pin No	Symbol	Pin Description
1	CE	Chip Enable Pin ("H" Active)
2	Vout	Output Pin
3	VIN	Input Pin
4	Lx	Switching Pin (Open Drain Output)
5	GND	Ground Pin
6	V _{FB}	Feedback Pin

ABSOLUTE MAXIMUM RATINGS

(GND=0V)

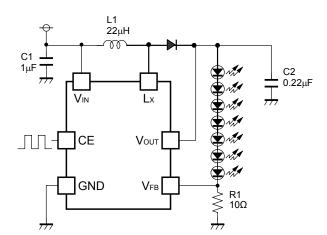
Symbol	Item	Rating	Unit	
Vin	V _{IN} Pin Voltage	-0.3 to 6.5	V	
Vce	CE Pin Voltage	-0.3 to V _{IN} +0.3	V	
V_{FB}	V _{FB} Pin Voltage	-0.3 to V _{IN} +0.3	V	
Vоит	Vоит Pin Voltage	-0.3 to 32	V	
V_{LX}	Lx Pin Voltage	-0.3 to 32	V	
lLX	Lx Pin Current	1000	mA	
P□	Power Dissipation (DFN1616-6B)*	640	mW	
I.D	Power Dissipation (SOT-23-6)*	420	IIIVV	
Та	Operating Temperature Range	-40 to 85	°C	
Tstg	Storage Temperature Range	-55 to 125	°C	

^{*)} For Power Dissipation, please refer to PACKAGE INFORMATION.

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured.

ELECTRICAL CHARACTERISTICS


• R1203x (Ta=25°C)

Symbol	Item	Conditions	Min.	Тур.	Max.	Unit
VIN	Operating Input Voltage		1.8		5.5	V
IDD	Supply Current	V _{IN} =5.5V, V _{FB} =0V, Lx at no load		0.5	1.0	mA
Istandby	Standby Current	V _{IN} =5.5V, V _{CE} =0V		1.0	5.0	μА
V UVLO1	UVLO Detector Threshold	V _{IN} falling	1.5	1.6	1.7	٧
Vuvlo2	UVLO Released Voltage	V _{IN} rising		Vuvlo1 +0.1	1.8	V
Vceh	CE Input Voltage "H"	V _{IN} =5.5V	1.5			٧
VCEL	CE Input Voltage "L"	V _{IN} =1.8V			0.5	V
RCE	CE Pull Down Resistance	V _{IN} =3.6V	600	1200	2200	kΩ
V _{FB}	V _{FB} Voltage Accuracy	V _{IN} =V _{CE} =3.6V	0.19	0.20	0.21	V
ΔV _{FB} / ΔTa	V _{FB} Voltage Temperature Coefficient	V _{IN} =V _{CE} =3.6V, -40°C ≤ Ta ≤ 85°C		±150		ppm /°C
I _{FB}	V _{FB} Input Current	V_{IN} =5.5V, V_{FB} =0V or V_{IN}	-0.1		0.1	μА
Ron	Switch ON Resistance	V _{IN} =3.6V, I _{LX} =100mA		1.35		Ω
I∟xleak	Switch Leakage Current	V _L x=30V		0	3.0	μА
I _L xlim	Switch Current Limit	V _{IN} =3.6V	400	700	1000	mA
fosc	Oscillator Frequency	VIN=3.6V, VOUT=VFB=0V	1.0	1.2	1.4	MHz
Maxduty	Maximum Duty Cycle	VIN=3.6V, VOUT=VFB=0V	86	91		%
V _{OVP1}	OVP Detector Threshold	VIN=3.6V, VOUT rising	28.7	29.5	30.3	V
ΔV _{OVP1} / ΔTa	V _{OVP1} Voltage Temperature Coefficient	V_{IN} = V_{CE} =3.6 V , -40 $^{\circ}$ C \leq Ta \leq 85 $^{\circ}$ C		±150		ppm /°C
V _{OVP2}	OVP Released Voltage	V _{IN} =3.6V, V _{OUT} falling		V _{OVP1} -1.55		V

RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

TYPICAL APPLICATIONS

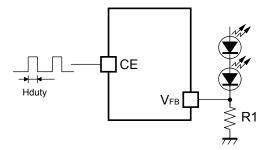
C1	CM105B105K06
C2	GRM21BR71H224
L1	LQH32CN220K53

• LED Current setting

When CE pin input is "H" (Duty=100%), LED current can be set with feedback resistor (R1)

ILED=VFB / R1

LED Dimming Control


The LED brightness can be controlled by inputting the PWM signal to the CE pin. If the CE pin input is "L" in the fixed time (Typ.0.5ms), the IC becomes the standby mode and turns OFF LEDs.

The current of LEDs when the CE pin is "H" input (Duty=100%) is shown by the above expression. The current of LEDs can be controlled by Duty of the PWM signal of the input CE pin. The current of LEDs when High-Duty of the CE input is Hduty reaches the value as calculatable following formula.

$$I_{LED}$$
= $Hduty \times V_{FB} / R1$

The frequency of the PWM signal is using the range between 200Hz to 300kHz.

When controlling the LED brightness by the PWM signal of 20kHz or less; The increasing or decreasing of the inductor current might be make a sounds in the hearable sound wave area. In that case, please use the PWM signal in the high frequency area.

Dimming control by CE pin input

Soft-Start

The output of the error amplifier starts from 0V and the inrush current is suppressed when starting by the CE pin "H" input.

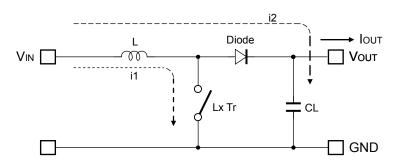
Moreover, the inrush current can be suppressed by gradually enlarging Duty of the PWM signal to the CE pin.

Selection of Inductors

The peak current of the inductor at normal mode can be calculated as next formula:

$$ILmax=1.25 \times I_{LED} \times V_{OUT} / V_{IN} + 0.5 \times V_{IN} \times (V_{OUT} - V_{IN}) / (L \times V_{OUT} \times fosc)$$

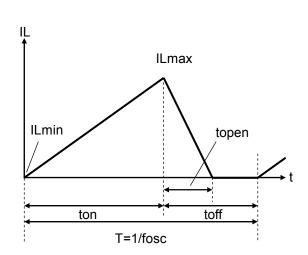
When the start-up or dimming control by CE pin, transient current flows, the peak current must be equal or less than the current limit of the IC. The peak current should not beyond the rating current of the inductor.

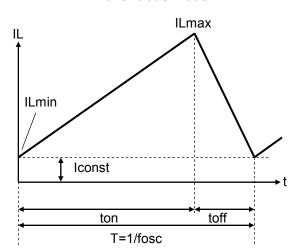

When 4-7LEDs are driven with V_{IN}=3.6V, the recommended inductance value is 10μH -22μH.

Selection of Capacitors

Set $1\mu F$ or more value bypass capacitor C1 between V_{IN} pin and GND pin as close as possible. Set $0.22\mu F$ or more capacitor C2 between V_{OUT} pin and GND pin.

OPERATION OF STEP-UP DC/DC CONVERTER AND OUTPUT CURRENT


<Basic Circuit>



<Current through L>

Discontinuous mode

Continuous mode

There are two operation modes of the step-up PWM control-DC/DC converter. That is the continuous mode and discontinuous mode by the continuousness inductor.

When the transistor turns ON, the voltage of inductor L becomes equal to V_{IN} voltage. The increase value of inductor current (i1) will be

$$\Delta i1 = V_{IN} \times ton / L$$
 Formula 1

As the step-up circuit, during the OFF time (when the transistor turns OFF) the voltage is continually supply from the power supply. The decrease value of inductor current (i2) will be

$$\Delta i2 = (V_{OUT} - V_{IN}) \times t_{OPEN} / L$$
 Formula 2

At the PWM control-method, the inductor current become continuously when topen=toff, the DC/DC converter operate as the continuous mode.

In the continuous mode, the variation of current of i1 and i2 is same at regular condition.

$$V_{IN} \times ton / L = (V_{OUT} - V_{IN}) \times toff / L$$
 Formula 3

The duty at continuous mode will be

The average of inductor current at topen=toff will be

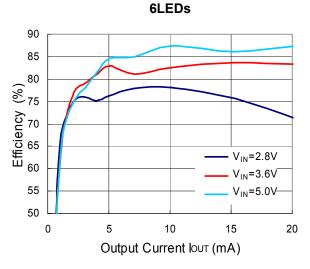
$$IL(Ave.) = V_{IN} \times ton / (2 \times L)$$
 Formula 5

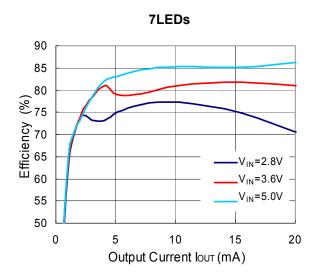
If the input power is equal to the output power, the lout will be

If the lout value is large than above the calculated value (Formula 6), it will become the continuous mode, At this status, the peak current (ILmax) of inductor will be

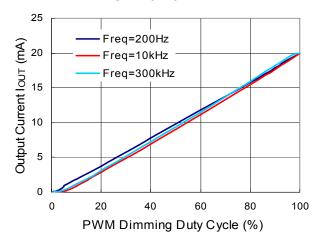
$$IL_{max} = I_{OUT} \times V_{OUT} / V_{IN} + V_{IN} \times ton / (2 \times L)$$

$$IL_{max} = I_{OUT} \times V_{OUT} / V_{IN} + V_{IN} \times T \times (V_{OUT} - V_{IN}) / (2 \times L \times V_{OUT})$$
Formula 8

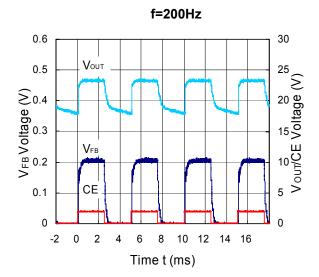

The peak current value is larger than the lout value. In case of this, selecting the condition of the input and the output and the external components by considering of ILmax value.

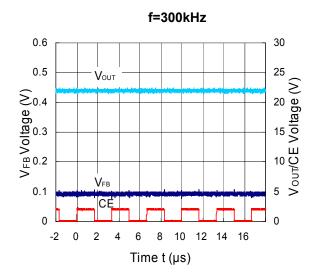

The explanation above is based on the ideal calculation, and the loss caused by Lx switch and the external components are not included.

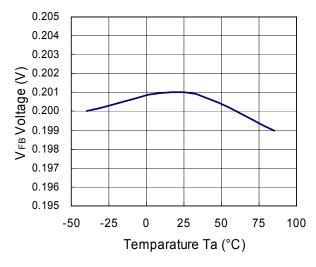
The actual maximum output current will be between 50% and 80% by the above calculations. Especially, when the IL is large or V_{IN} is low, the loss of V_{IN} is generated with on resistance of the switch. Moreover, it is necessary to consider V_F of the diode (approximately 0.8V) about V_{OUT} .

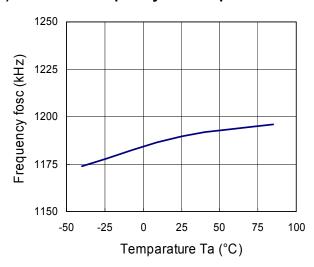

TYPICAL CHARACTERISTICS

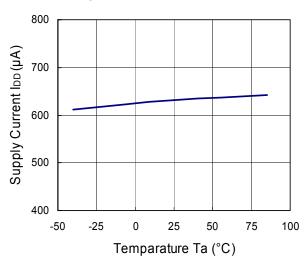
1) Efficiency vs. Output Current Characteristics

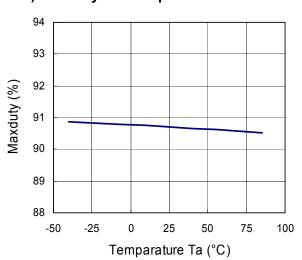



2) PWM Dimming Duty Cycle vs. Output Current(R1=10Ω)

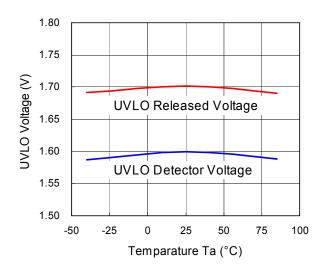

3) Output Current Ripple during PWM Dimming



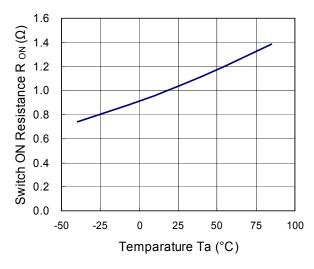

4) VFB Voltage vs. Temperature


6) Oscillator Frequency vs. Temperature

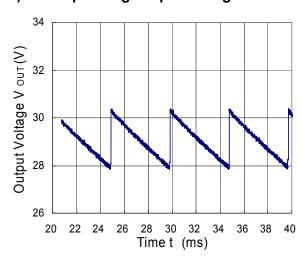
5) Supply Current vs. Temperature

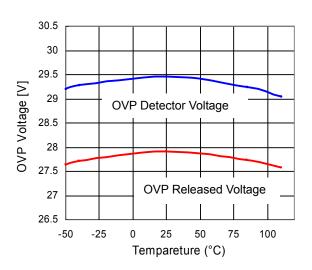


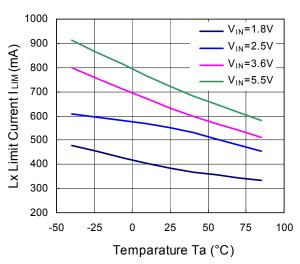
7) Maxduty vs. Temperature



R1203x


8) UVLO Output Voltage vs. Temperature


10) Switch ON Resistance vs. Temperature


12) OVP Operating Output Voltage Waveform

9) OVP Voltage vs. Temperature

11) Lx Current Limit vs. Temperature

- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
- 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
- 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, firecontainment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. Anti-radiation design is not implemented in the products described in this document.
- 8. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

RICOH COMPANY., LTD. Electronic Devices Company

■Ricoh presented with the Japan Management Quality Award for 1999. Ricoh continually strives to promote customer satisfaction, and shares the achievements of its management quality improvement program with people and society

■Ricoh awarded ISO 14001 certification.

The Ricoh Group was awarded ISO 14001 certification, which is an international standard for environmental management systems, at both its domestic and overseas production facilities. Our current aim is to obtain ISO 14001 certification for all of our business offices.

http://www.ricoh.com/LSI/

RICOH COMPANY, LTD. **Electronic Devices Company**

 Higashi-Shinagawa Office (International Sales) 3-32-3, Higashi-Shinagawa, Shinagawa-ku, Tokyo 14 Phone: +81-3-5479-2857 Fax: +81-3-5479-0502

RICOH EUROPE (NETHERLANDS) B.V.

 Semiconductor Support Centre
 Prof. W.H.Keesomlaan 1, 1183 DL Amstelveen, The Netherlands Prof. W.H.Keesomlaan 1, 1183 DL Amstelveen, The P.O.Box 114, 1180 AC Amstelveen Phone: +31-20-5474-309 Fax: +31-20-5474-791

RICOH ELECTRONIC DEVICES KOREA Co., Ltd. 11 floor, Haesung 1 building, 942, Daechidong, Gangnamgu, Seoul, Kore Phone: +82-2-2135-5700 Fax: +82-2-2135-5705

RICOH ELECTRONIC DEVICES SHANGHAI Co., Ltd. Room403, No.2 Building, 690#Bi Bo Road, Pu Dong New district, Shanghai 201203, People's Republic of China Phone: +86-21-5027-3200 Fax: +86-21-5027-3299

RICOH COMPANY, LTD. Electronic Devices Company Taipei office

Room109, 10F-1, No.51, Hengyang Rd., Taipei City, Taiwan (R.O.C.) Phone: +886-2-2313-1621/1622 Fax: +886-2-2313-1623

Ricoh completed the organization of the Lead-free production for all of our products. After Apr. 1, 2006, we will ship out the lead free products only. Thus, all products that will be shipped from now on comply with RoHS Directive.