SONY

High-speed Buffer Amplifier for CCD Image Sensor

CXA3741AUR

Description

The CXA3741UR is a high-speed buffer amplifier IC with built-in switches. (Applications: CCD image sensor output buffers, digital still cameras, camcorders, other general buffers)

Features

- ightharpoonup Power consumption: 26 mW (typ.) (IDRV = 50μA (220k Ω when Vcc = 15V), ISF current = 0, during no signal)
- ◆ Push-pull output
- ightharpoonup High-speed response: 500 V/μs (IDRV = 50μA (220k Ω when Vcc = 15V), CL = 20pF)
- ◆ Internal sink current mode for CCD source follower output. Settable by external resistance RISF
- ◆ Sink current and drive current with each built-in switch. Each current value can be set by an external resistance.

Structure

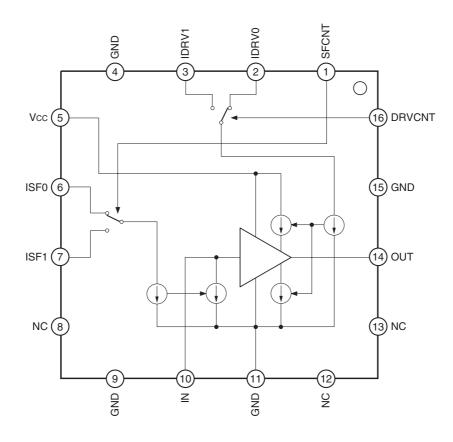
Bipolar silicon monolithic IC

Absolute Maximum Ratings

(Ta = 25°C)

 Supply voltage 	Vcc	16	V
Input voltage	IN	GND - 0.3 to Vcc + 0.3	V
Storage temperature	Tstg	-65 to +150	°C
Allowable power dissipation	PD	0.73	W

(when mounted on a two-layer board; $30mm \times 30mm$, t = 0.8mm)


Recommended Operating Conditions

 Supply voltage 	Vcc	9 to 15.5	V
Operating temperature	Ta	-20 to +75	°C

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

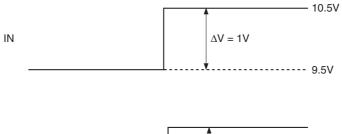
- 1 - E07711

Block Diagram and Pin Description

Pin Description and I/O Pin Equivalent Circuit

Pin No.	Symbol	I/O	Standard voltage level	Equivalent circuit	Description
4	GND	_	0V	_	GND
5	Vcc	_	15V	_	Power supply
9	GND	_	0V	_	GND
11	GND	_	0V	_	GND
15	GND	_	0V	_	GND
1	SFCNT	ı	CMOS	Усс 10µА 10µА 10µА	Switches the sink current setting for CCD with open source output. When the SFCNT pin (Pin 16) input logic is low, the sink current is set according to the current set by the ISF0 pin (Pin 6). When high, the sink current is set according to the current set by the ISF1 pin (Pin 7).
16	DRVCNT	1	CMOS	16 W 2k 60k 60k 60k	Switches the drive current setting. When the DRVCNT pin (Pin 16) input logic is low, the drive current is set according to the current set by the IDRV0 pin (Pin 2). When high, the drive current is set according to the current set by the IDRV1 pin (Pin 3).
2	IDRV0	I	_	Vcc 30k 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	External resistor connection for setting the drive current. Connect external resistors between these pins and Vcc (Pin 5). When not using this
3	IDRV1	I	_	3 W 30k \$20k \$20k GND	function, connect these pins to GND. *The minimum value for external resistors should be 100kΩ (when Vcc is 15V).

Pin No.	Symbol	I/O	Standard voltage level	Equivalent circuit	Description
6	ISF0	I	_	Vcc 30k W	External resistor connection for setting the CCD with open source output sink current. Connect external resistors between these pins and Vcc (Pin 5).
7	ISF1	I	_	7	When not using this function, connect these pins to GND. *The minimum value for external resistors should be 100kΩ (when Vcc is 15V).
10	IN	I	CCD output voltage	Vcc 10 10 × 10 × 10 N 10 N 10 N 10 N 10 N 10	Input
14	OUT	0	≈IN	Vcc 50 GND	Output

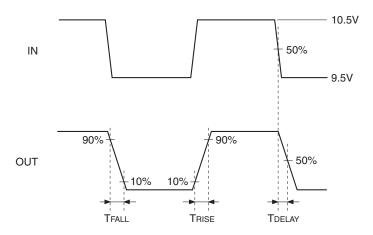


Electrical Characteristics

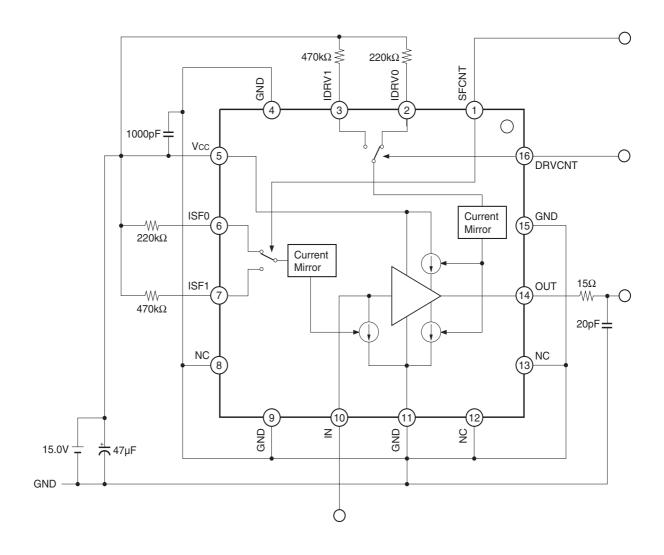
(Ta = 25°C, Vcc = 15V, Ridrvo = 220k Ω , Ridrv1 = 470k Ω , ISF0 and ISF1 pins: connected to GND)

Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Unit
Supply current	Icc	IN = 10V, RDRV0 = $220k\Omega$, RDRV1 = $470k\Omega$ DRVCNT = $0V$	1.5	1.7	1.9	mA
Voltage gain	VGAIN	*1 IN: F10Vdc Δ V = 1V GAIN = Δ OUT/ Δ V	_	0.999	_	V/V
I/O offset voltage	Voffset	IN = 10V Voffset = OUT-IN	-100	_	100	mV
I/O voltage range	Vrange	Ridry = 100 kΩ Ridry = 150 kΩ Ridry = 220 kΩ Ridry = 330 kΩ	3.3 2.9 2.5 2.1	_ _ _ _	Vcc - 2.0 Vcc - 1.85 Vcc - 1.8 Vcc - 1.7	٧
Input bias current	IBIAS	IN = 10V, ISF0, 1 = 0V, IDRV0, 1 = 220kΩ	-6.0	3.0	20	μΑ
		IN = 10V, ISF0, 1, IDRV0, 1 = 0V	3.0	9.0	15	μА
Sink current	Isink	IN = 10V, RISF0 = 220k Ω , RISF1 = 470k Ω SFCNT = 0V	2.6	2.9	3.2	mA
Switch control voltage "High"	VcontH	Vpp = 3.0 ± 0.3V	2.025	_	_	V
Switch control voltage "Low"	VcontL	- J.U ± U.JV	_	_	0.825	V

^{*1} Voltage gain



AC Characteristics


 $(Ta = 25^{\circ}C, IDRV = 50\mu A \ (220k\Omega \ when \ Vcc = 15V), ISF0 \ and ISF1 \ pins: connected \ to \ GND, \ R_L = 15\Omega, \ C_L = 20pF)$

Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Unit
Bandwidth	GBW	IN = 50mVp-p	_	220	_	MHz
Rise time	Trise	*1 IN = 9.5 to 10.5V 10 to 90%	_	2.5	3.5	ns
Fall time	TFALL	*1 IN = 10.5 to 9.5V 10 to 90%	_	3.0	4.0	ns
I/O delay time	TDELAY	*1 IN = 9.5 to 10.5V @50%	0.9	1.0	2.0	ns

 $^{^{*1}}$ Rise time, fall time and I/O delay time

Evaluation Circuit

SONY CXA3741AUR

Description of Operation

Current Settings

1. Output Drive Current

The small signal output impedance of the OUT pin (Pin 14) can be set by connecting the IDRV0 pin (Pin 2) or the IDRV1 pin (Pin 3) to Vcc through a resistor.

The inflow current to the IDRV pin is multiplied by 10 times inside the IC, and flows as the output stage idling current.

The IDRV pins have internal $50k\Omega$ resistors.

When the drive current setting switching pin DRVCNT (Pin 16) input logic is low, the inflow current to the IDRV pin is set according to the current set by the IDRV0 pin (Pin 2).

When high, the inflow current to the IDRV pin is set according to the current set by the IDRV1 pin (Pin 3). The above-mentioned inflow current to the IDRV pin can be calculated as follows.

IIDRV = (Vcc – VBE
$$\times$$
 2)/(RiDRV + 50kΩ)
= (15 – 1.46)/270kΩ
= 50.1μA

Here, Vcc = 15V, VBE = 0.73V (typ.), and Ridry = $220k\Omega$.

The small signal output impedance at this time can be calculated as follows.

ROUT =
$$(26\text{mV}/(10 \times \text{IIDRV}))/2$$

= $(26\text{mV}/501\mu\text{A})/2$
= 26Ω

2. Sink Current for CCD with Open Source Output

The sink current of the IN pin (Pin 10) can be set by connecting the ISF0 pin (Pin 6) or the ISF1 pin (Pin 7) to Vcc through a resistor.

This sink current can be used as the CCD output stage source follower drive current.

The inflow current to the ISF pin is multiplied by 58 times inside the IC, and flows as the sink current. The ISF pins have internal $50k\Omega$ resistors.

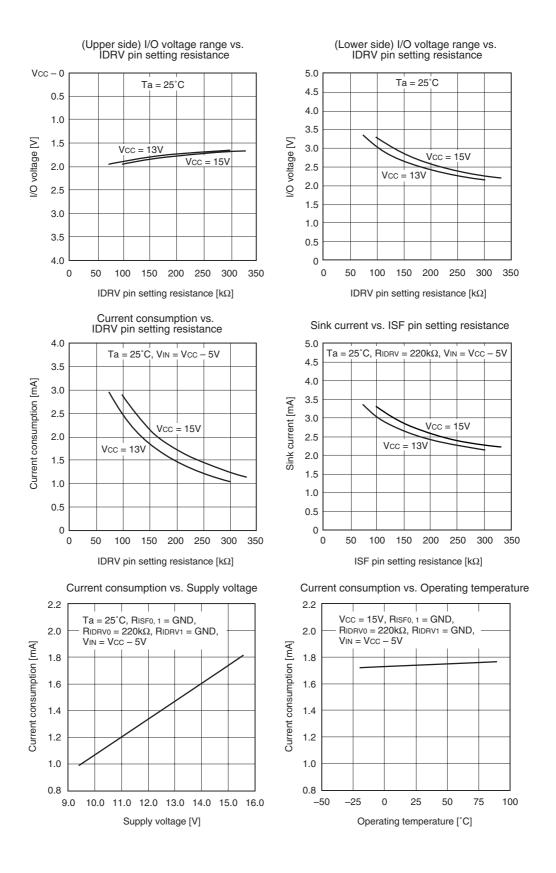
When the CCD source follower output sink current setting switching pin SFCNT (Pin 1) input logic is low, the inflow current to the ISF pin is set according to the current set by the ISF0 pin (Pin 6).

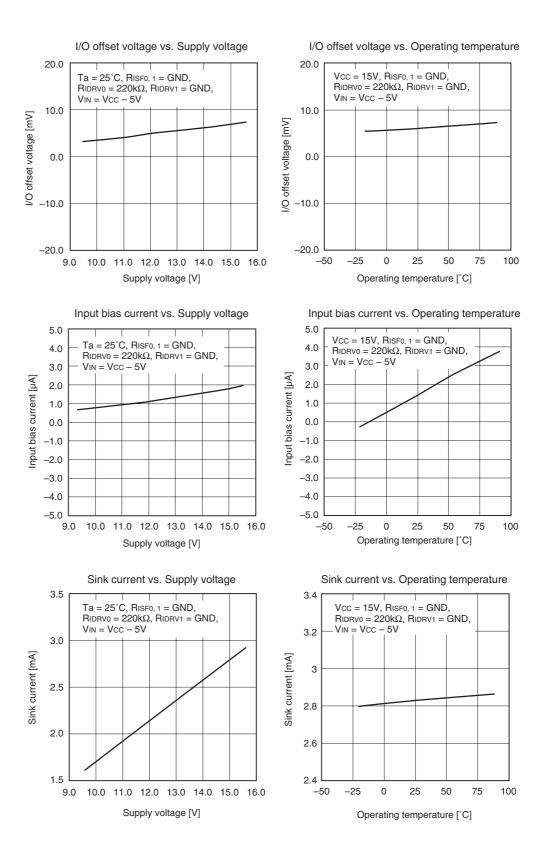
When high, the inflow current to the ISF pin is set according to the current set by the ISF1 pin (Pin 7). The above-mentioned inflow current to the ISF pin can be calculated as follows.

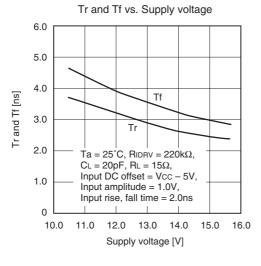
IISF = (Vcc - VBE
$$\times$$
 2)/(RISF + 50kΩ)
= (15 - 1.46)/270kΩ
= 50.1μA

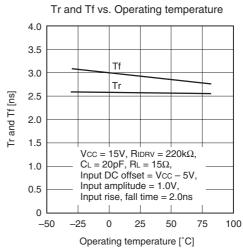
Here, Vcc = 15V, VBE = 0.73V (typ.), and RisF = 220k Ω .

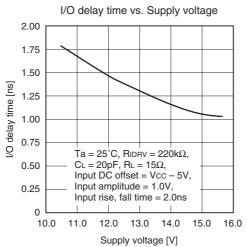
The sink current at this time can be calculated as follows.

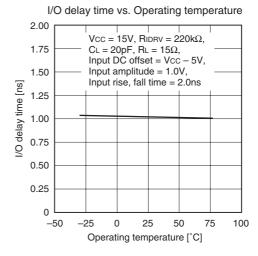

$$Isink = 58 \times IISF$$
$$= 2.9mA$$

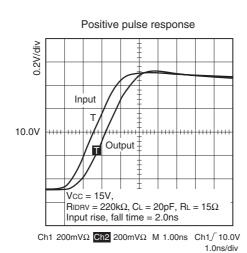

Note) This IC operation depends on IDRV and ISF.

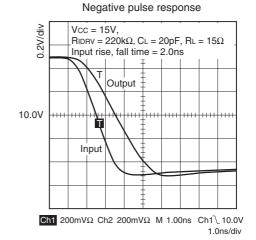

This specification is described based on IDRV of $220k\Omega$ when Vcc = 15V. However , set it to $180k\Omega$ to occur the same current when using under the condition that Vcc = 13V. [IDRV and ISF vs external resistor]

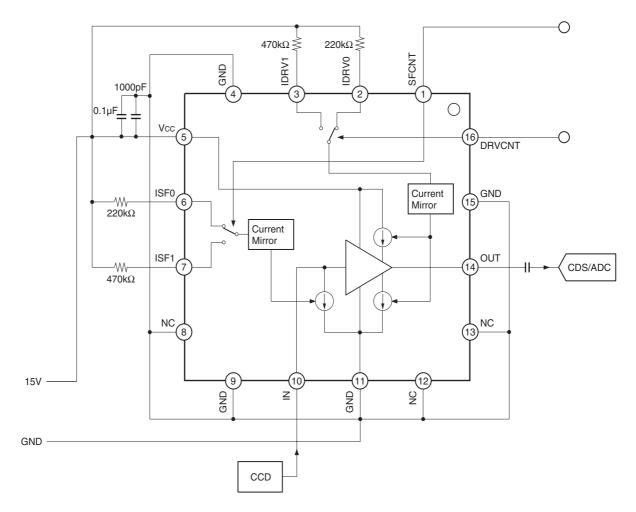

Current (μA)	90	68	50	35	26	Unit
When Vcc = 15V	100	150	220	330	470	kΩ
When Vcc = 13V	78	120	180	270	390	kΩ


Example of Representative Characteristics

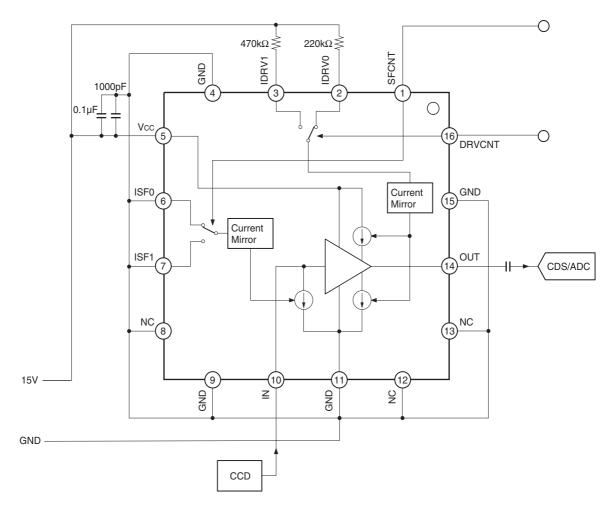








SONY


Application Circuit 1 (when using CCD with open source output)

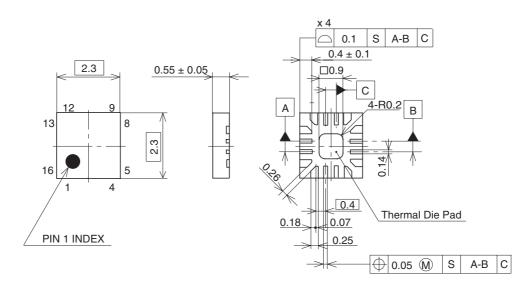
Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

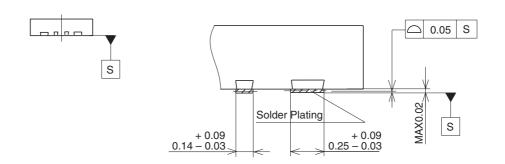
SONY

Application Circuit 2 (when using CCD with internal current source)

Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

CXA3741AUR


Notes On Handling


- ◆ Provide the widest GND pattern possible on the board.
- ullet Use a 1000pF (recommended) ceramic capacitor and a 0.1 μ F (recommended) ceramic capacitor in parallel for the bypass capacitor connected between the power supply and GND, and connect them as close to the IC pins as possible.
- ◆ Load capacitance causes the input/output wiring response to worsen and results in noise. Use the short wiring layout, and shield it with GND.
- ♦ When the output pin (Pin 14) is shorted to either the power supply or GND, an overcurrent may flow to the IC and damage it.
- ♦ When the input pin (Pin 10) is shorted to GND, an overcurrent may flow to the internal parasitic elements and damage them.

Package Outline

(Unit: mm)

16PIN UQFN (PLASTIC)

TERMINAL SECTION

Note: Cutting burr of lead are 0.05mm MAX.

SONY CODE	UQFN-16P-01
EIAJ CODE	
JEDEC CODE	

PACKAGE STRUCTURE

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER PLATING
LEAD MATERIAL	COPPER ALLOY
PACKAGE MASS	0.01g

LEAD PLATING SPECIFICATIONS

ITEM	SPEC.
LEAD MATERIAL	COPPER ALLOY
SOLDER COMPOSITION	Sn-Bi Bi:1-4wt%
PLATING THICKNESS	5-18μm