

Date: - 24 Jun, 2004

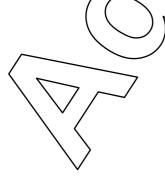
Data Sheet Issue:

**Provisional Data** 

# **Rectifier Diode**

Types W5292T#500 to W5292

Development Type No.: WX043TC500-560


## **Absolute Maximum Ratings**

|           | VOLTAGE RATINGS                               |        | MAXIMUM<br>LIMITS | UNITS |
|-----------|-----------------------------------------------|--------|-------------------|-------|
| $V_{RRM}$ | Repetitive peak reverse voltage, (note 1)     | /      | 5000-5600         | V     |
| $V_{RSM}$ | Non-repetitive peak reverse voltage, (note 1) | $\sim$ | 5100-5700         | V     |

|                      | OTHER RATINGS                                                                                             | MAXIMUM<br>LIMITS    | UNITS            |
|----------------------|-----------------------------------------------------------------------------------------------------------|----------------------|------------------|
| I <sub>F(AV)M</sub>  | Maximum average forward current, T <sub>sink</sub> =55°C, (note 2)                                        | 5292                 | Α                |
| $I_{F(AV)M}$         | Maximum average forward current. T <sub>sink</sub> =100°C (note 2)                                        | 3680                 | Α                |
| I <sub>F(AV)M</sub>  | Maximum average forward current. T <sub>sink</sub> 100°C, (note 3)                                        | 2271                 | Α                |
| I <sub>F(RMS)M</sub> | Nominal RMS forward current, T <sub>sink</sub> =25°C, (note 2)                                            | 9724                 | Α                |
| I <sub>F(d.c.)</sub> | D.C. forward current, T <sub>sink</sub> =25°C, (note 4)                                                   | 8543                 | Α                |
| I <sub>FSM</sub>     | Peak non-repetitive surge t <sub>p</sub> =10 ms V <sub>m</sub> =60% V <sub>RRM</sub> , (note 5)           | 52.7                 | kA               |
| I <sub>FSM2</sub>    | Peak non-repetitive surge t <sub>p</sub> =10ms, V <sub>rm</sub> ≤10V, (note 5)                            | 58.0                 | kA               |
| l <sup>2</sup> t     | I <sup>2</sup> t capacity for fusing t <sub>p</sub> =10ms, V <sub>m</sub> =60%V <sub>RRM</sub> , (note 5) | 13.9×10 <sup>6</sup> | A <sup>2</sup> s |
| l <sup>2</sup> t     | $I^2$ t capacity for fusing $t_p \neq 10$ ms, $v_{eq} \leq 10$ V (note 5)                                 | 16.8×10 <sup>6</sup> | A <sup>2</sup> s |
| T <sub>j op</sub>    | Operating temperature range                                                                               | -40 to +160          | °C               |
| T <sub>stg</sub>     | Storage temperature lange ( )                                                                             | -55 to +160          | °C               |

- De-rating factor of 0.13% per C is applicable for T<sub>j</sub> below 25°C.
   Double side cooled, single phase; 50Hz, 180° half-sinewave.
   Single side cooled, single phase; 50Hz, 180° half-sinewave.
   Double side cooled.

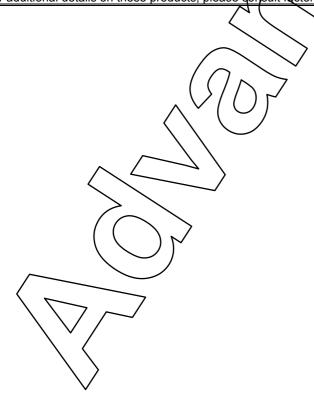
- 5) Half-sinewave 160°6 T<sub>i</sub> initial.





# **Characteristics**

| i <del></del>    |                                           |      |       |               |                                                              |       |
|------------------|-------------------------------------------|------|-------|---------------|--------------------------------------------------------------|-------|
|                  | PARAMETER                                 | MIN. | TYP.  | MAX.          | TEST CONDITIONS (Note 1)                                     | UNITS |
| $V_{FM}$         | Maximum peak forward voltage              | -    | -     | 1.70          | I <sub>TM</sub> =6000A                                       | V     |
| $V_{FM}$         | Maximum peak forward voltage              | -    | -     | 2.79          | I <sub>TM</sub> =15900A                                      | V     |
| $V_{T0}$         | Threshold voltage                         | -    | -     | 1.027         |                                                              | V     |
| r <sub>T</sub>   | Slope resistance                          | -    | -     | 0.111         |                                                              | mΩ    |
| I <sub>RRM</sub> | Peak reverse current                      | -    | -     | 200           | Rated V <sub>RR</sub> M                                      | mA    |
| I <sub>RRM</sub> | Peak reverse current                      | -    | -     | 30            | Rated V <sub>RRM</sub> , V <sub>j</sub> =25/C                | mA    |
| Q <sub>rr</sub>  | Recovered charge                          | -    | 18000 | - /           |                                                              | μC    |
| Q <sub>ra</sub>  | Recovered charge, 50% Chord               | -    | 12000 | 14000         | T <sub>M</sub> =4000A, t <sub>p</sub> =2000μs, di/dt=10A/μs, | μC    |
| Irr              | Reverse recovery current                  | -    | 360   | /- <          | V <sub>r</sub> =100V                                         | Α     |
| trr              | Reverse recovery time                     | -    | 68    |               |                                                              | μs    |
| D                | Thermal registance junction to be steinly | -    | -     | 0.008         | Double side cooled                                           | K/W   |
| $R_{thJK}$       | Thermal resistance, junction to heatsink  | -    | -     | 0.016         | Single side cooled                                           | K/W   |
| F                | Mounting force                            | 63   | - ,   | 777_          |                                                              | kN    |
| \A/              | Weight                                    | -    | 1.28  | $\sim$ $\sim$ | Outline Options TC and TT                                    | les.  |
| Wt               | Weight                                    | _    | 1.70  | <b>//</b> /   | Outline Options TD and TV                                    | kg    |


#### Notes:-

- 1) Unless otherwise indicated T<sub>i</sub>=160°C.
- 2) For other clamp forces, please consult factory.

Notes on rupture rated packages.

This product is available with a non-rupture rated package.

For additional details on these products, please done will factory.



### **Notes on Ratings and Characteristics**

#### 1.0 Voltage Grade Table

| Voltage Grade | V <sub>RRM</sub><br>V | $V_{RSM}$ $V$ | DC P |
|---------------|-----------------------|---------------|------|
| 50            | 5000                  | 5100          | 2200 |
| 52            | 5200                  | 5300          | 2240 |
| 54            | 5400                  | 5500          | 2280 |
| 56            | 5600                  | 5700          | 2320 |

#### 2.0 Extension of Voltage Grades

This report is applicable to other voltage grades when supply has been agreed by Sales/Production.

# 3.0 De-rating Factor

A blocking voltage de-rating factor of 0.13%/°C is applicable to this device for Tibelow 25°C.

#### 4.0 Snubber Components

When selecting snubber components, care must be taken not to use excessively large values of snubber capacitor or excessively small values of snubber resistor. Such excessive component values may lead to device damage due to the large resultant values of snubber discharge current. If required, please consult the factory for assistance.

#### 5.0 Computer Modelling Parameters

5.1 Device Dissipation Calculations

$$I_{AV} = \frac{-V_{T0} + \sqrt{{V_{T0}}^2 + 4 \cdot ff^2 \cdot r_r \cdot W_{AV}}}{2 \cdot ff^2 \cdot r_T} \qquad \text{and:}$$

$$W_{AV} = \frac{\Delta T}{R_{th}}$$
  
$$\Delta T = T_{j \max} - T_{K}$$


Where  $V_{T0}$ =1.027V,  $r_{T}$ =0.111m $\Omega$ ,

 $R_{\it th}$  = Supplementary thermal impedance, see table below and

ff = Form factor, see table below.

| Supplementary Thermal Impedance |               |                |               |       |  |
|---------------------------------|---------------|----------------|---------------|-------|--|
| Conduction Angle                | 6 phase (60°) | 3 phase (120°) | ½ wave (180°) | d.c.  |  |
| Square wave Double Side Cooled  | 0.00907       | 0.00891        | 0.00878       | 0.008 |  |
| Square wave Single Side Gooled  | 0.01781       | 0.01759        | 0.01731       | 0.016 |  |
| Sine wave Double Side Cooled    | 0.00903       | 0.00884        | 0.00867       |       |  |
| Sine wave Single Side Cooled    | 0.01775       | 0.01735        | 0.01682       |       |  |

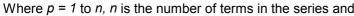
|                  | Form Factors  |                |               |      |  |
|------------------|---------------|----------------|---------------|------|--|
| Conduction Angle | 6 phase (60°) | 3 phase (120°) | ½ wave (180°) | d.c. |  |
| Square-wave      | 2.449         | 1.732          | 1.414         | 1    |  |
| Sine wave        | 2.778         | 1.879          | 1.57          |      |  |



#### 5.2 Calculating V<sub>F</sub> using ABCD Coefficients

The on-state characteristic I<sub>F</sub> vs. V<sub>F</sub>, on page 6 is represented in two ways;

- (i) the well established  $V_{T0}$  and  $r_T$  tangent used for rating purposes and
- (ii) a set of constants A, B, C, D, forming the coefficients of the representative equation for  $V_F$  in terms of  $I_F$  given below:


$$V_F = A + B \cdot \ln(I_F) + C \cdot I_F + D \cdot \sqrt{J_F}$$

The constants, derived by curve fitting software, are given below for both hot and colo characteristics. The resulting values for  $V_F$  agree with the true device characteristic over a curvent range, which is limited to that plotted.

| 25°C Coefficients  A 0.61079656 0.615582755  B 0.0234119 -0.02994657  C 6.6199×10 <sup>-5</sup> 6.917×10 <sup>-5</sup> D 3.72241×10 <sup>-3</sup> 0.01174699 |   |                          |                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------------------|------------------------|
| B 0.0234119 -0.02994657<br>C 6.6199×10 <sup>-5</sup> 6.917×10 <sup>-5</sup>                                                                                  |   | 25°C Coefficients        | 160 C Coefficients     |
| C 6.6199×10 <sup>-5</sup> 6.917×10 <sup>-5</sup>                                                                                                             | Α | 0.61079656               | 0.615582758            |
| <u> </u>                                                                                                                                                     | В | 0.0234119                | -0.02994657            |
| D 3.72241×10 <sup>-3</sup> 9.01174699                                                                                                                        | С | 6.6199×10 <sup>-5</sup>  | 6.917×10 <sup>-5</sup> |
|                                                                                                                                                              | D | 3.72241×10 <sup>-3</sup> | 9.01174699             |
|                                                                                                                                                              |   |                          |                        |

#### 5.3 D.C. Thermal Impedance Calculation

$$r_t = \sum_{p=1}^{p=n} r_p \cdot \left(1 - e^{\frac{-t}{\tau_p}}\right)$$



t = Duration of heating pulse in seconds.

 $r_{\star}$  = Thermal resistance at time t.

 $r_p$  = Amplitude of  $p_{th}$  term.

 $\tau_p$  = Time Constant of  $r_{th}$  term.

The coefficients for this device are shown in the tables below:

| auon                                                                            |  |
|---------------------------------------------------------------------------------|--|
| $r_{p} = \sum_{p=1}^{p=n} r_{p} \cdot \left(1 - e^{\frac{-t}{\tau_{p}}}\right)$ |  |
| ns in the series and:                                                           |  |

|             |          | D.C. Single Side        | Cooled                  |                        |
|-------------|----------|-------------------------|-------------------------|------------------------|
| Term        | 1        | 2                       | 3                       | 4                      |
| $r_p$       | 0.01551  | 2.7827×10 <sup>-3</sup> | 4.2105×10 <sup>-3</sup> | 9.443×10 <sup>-4</sup> |
| $	au_{ ho}$ | 10.04275 | 1.783567                | 0.2231307               | 3.428×10 <sup>-3</sup> |

|             |                         | D.C. D                  | ouble Side Cooled       |                         |                           |
|-------------|-------------------------|-------------------------|-------------------------|-------------------------|---------------------------|
| Term        | 1                       | 2                       | (30)                    | 4                       | 5                         |
| $r_p$       | 6.4176×10 <sup>-3</sup> | 2.7472×10 <sup>-3</sup> | 1/2515×10 <sup>-3</sup> | 0.6336×10 <sup>-3</sup> | 0.59597×10 <sup>-3</sup>  |
| $	au_{ ho}$ | 1.785337                | 0.34595                 | 0.0099651               | 0.014214                | 2.298151×10 <sup>-3</sup> |

# 6.0 Reverse recovery ratings

(i) Q<sub>ra</sub> is based on 50% I<sub>rm</sub> chord as shown in Fig.

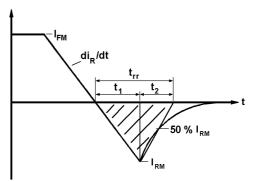
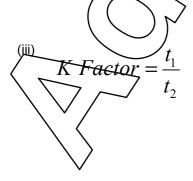
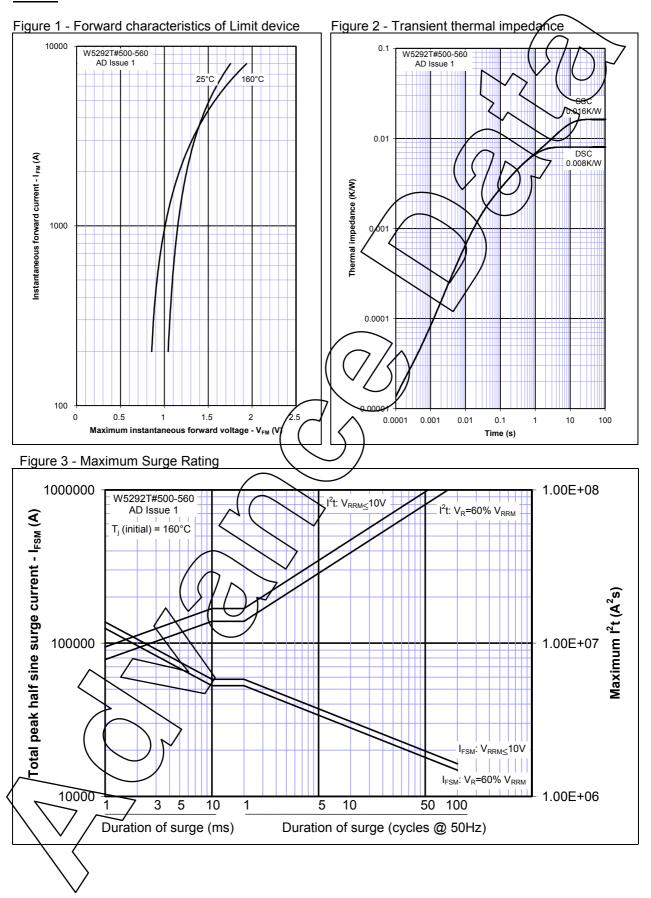





Fig. 1



$$Q_{rr} = \int_{0}^{150 \, \mu s} i_{rr}.dt$$

### **Curves**



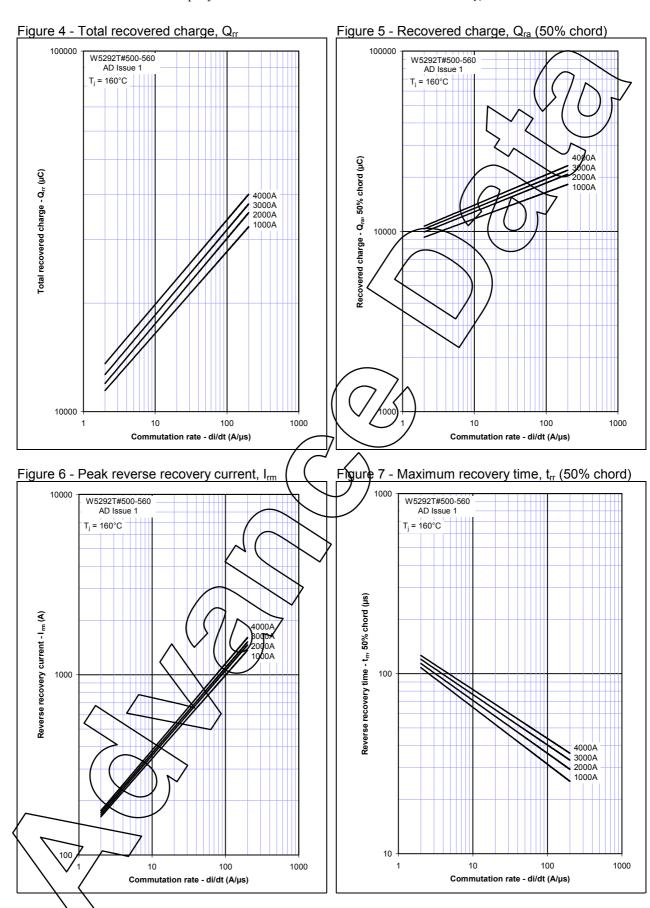



Figure 8 – Forward current vs. Power dissipation – Double Side Cooled

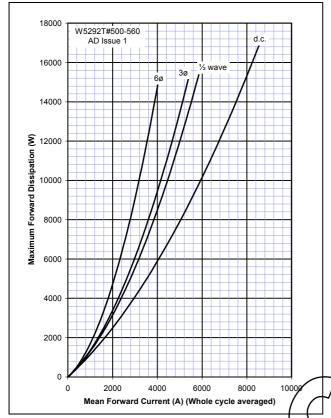



Figure 9 – Forward current vs. Heatsink temperature - Double Side Cooled

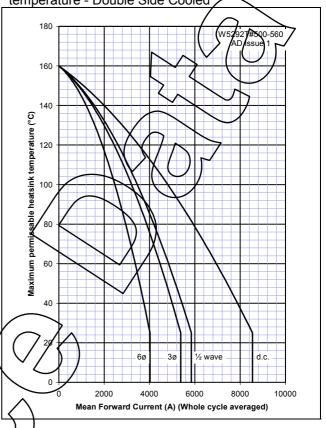



Figure 10 – Forward current vs. Power dissipation – Single Side Cooled

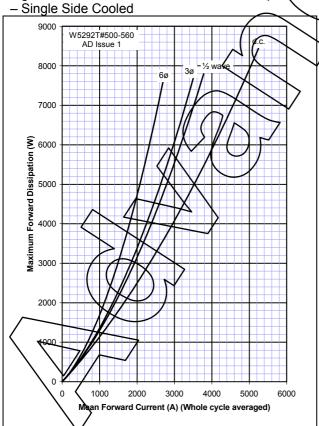
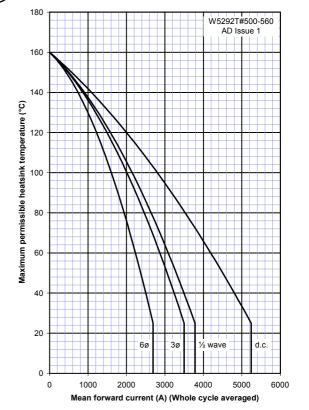
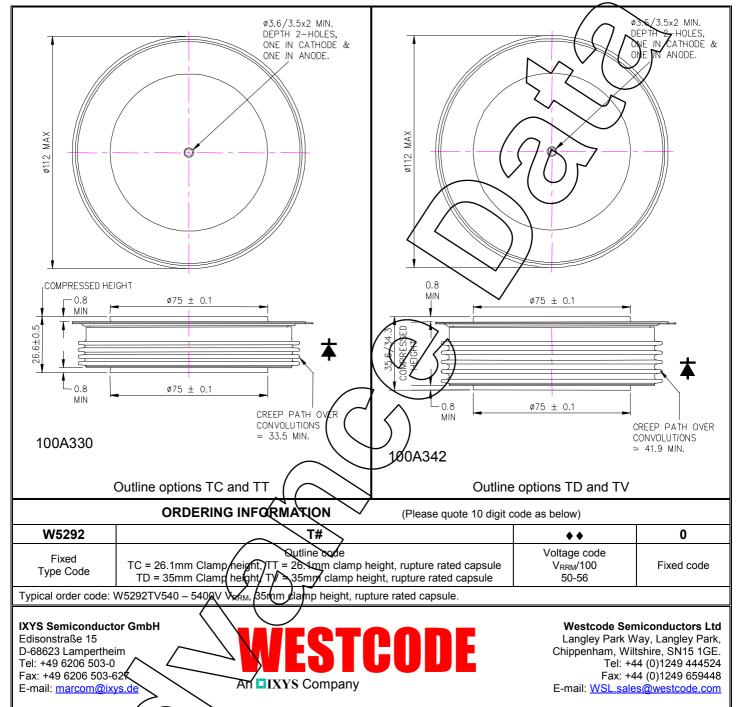





Figure 11 – Forward current vs. Heatsink temperature – Single Side Cooled





#### **Outline Drawing & Ordering Information**



**IXYS** Corporation 3540 Bassett Street

Santa Clara CA 95054 Tel: +1 (408) 982 0700 Fax: +1 (408) 496 0670

E-mail:

www.westcode.com

www.ixys.com

#### **Westcode Semiconductors Inc**

3270 Cherry Avenue Long Beach CA 90807 USA Tel: +1 (562) 595 6971 Fax: +1 (562) 595 8182

E-mail: WSI.sales@westcode.com

The informa dential and is protected by Copyright. The information may not be used or disclosed permission of and in the manner permitted by the proprietors Westcode Semiconductors Ltd. except with the

In the interest of p ovement. Westcode reserves the right to change specifications at any time without prior notice.

Devices with a suffix of e (2-letter, 3-letter or letter/digit/letter combination) added to their generic code are not necessarily subject to the conditions and lin ned in this report.

© Westcode Semiconductors Ltd.