

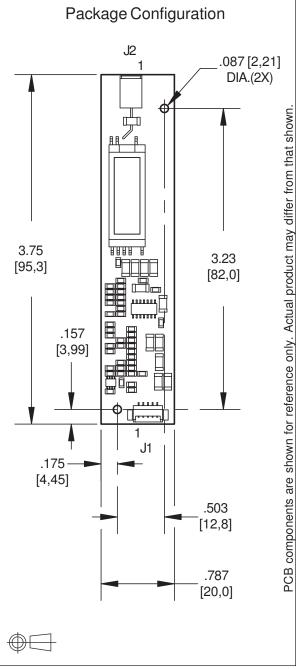
Endicott Research Group, Inc. 2601 Wayne St., Endicott, NY 13760 607-754-9187 Fax 607-754-9255 http://www.ergpower.com

Specifications and **Applications Information**

08/12/10

The ERG SFW Series of DC to AC inverters is specifically designed for applications which require high efficiency, wide dimming and LCD brightness stability over a wide input voltage range.

Designed, manufactured and supported within the USA, the SFW series features:


- ✓ Less than 6mm in Height
- Onboard regulation of lamp current
- **High efficiency**
- Open lamp detection
- Onboard PWM dimming
- Support for a wide range of displays
- Low EMI emission

Connectors				
Input Connector	Output Connector			
Molex 53261-0571	JST SM02B-BHSS-1-TB			
J1-1 +Vin J1-2 GND J1-3 Enable J1-4 Control J1-5 N/C	J2-1 ACout J2-2 ACreturn			

Smart Force™ Single Lamp Inverter

Absolute Maximum Ratings

Rating	Symbol	Value	Units	
Input Voltage Range	V _{in}	-0.3 to +21.0	Vdc	
Enable	V _{Enable}	-0.3 to Vin	Vdc	
Control	V _{Control}	-0.3 to +5.5	Vdc	
Ambient Operating Temperature	T _a	-20 to +85	°C	
Storage Temperature	T _{stg}	-40 to +85	°C	

Operating Characteristics

Unless otherwise noted Vin = 12.0 Vdc, Ta = 25°C, with a simulated load and unit has been running for 5 minutes.

Characteristic	Symbol	Min	Тур	Max	Units	
Input Voltage (note 1)	V _{in}	+8.0	+12.0	+18.0	Vdc	
Input Current (note 2)	I in	-	0.44	0.51	Adc	
Operating Frequency	F _o		63		kHz	
Minimum Output Voltage (note 3)	V _{out (min)}	1800	-	-	Vrms	
Efficiency	η	-	75	-	%	
Output Current (per lamp) (note 4)	I out	-	5.0	-	mArms	
Output Voltage (note 5)	V _{out}	-	-	800	Vrms	
Enable Pin						
Turn-off Threshold	V _{thoff}	GND	-	0.5	Vdc	
Turn-on Threshold	V _{thon}	2.4	-	Vin	Vdc	

Specifications subject to change without notice.

- (Note 1) Vin is measured at the pcb connector.
- (Note 2) Input current in excess of maximum may indicate a load/inverter mismatch condition, which can result in reduced reliability. Please contact ERG technical support.
- (Note 3) Provided data is not tested but guaranteed by design.
- (Note 4) The output current is measured from the AC return lead of the inverter using a Tektronix CT-2 AC current probe terminated into 50 ohms at the oscilloscope input.
- (Note 5) Max allowable lamp voltage.

Onboard PWM

Unless otherwise noted Vin = 12.0 Vdc, T_a = 25 °C and unit has been running for 5 minutes.

Characteristic	Symbol	Min	Тур	Max	Units
Frequency	f _{pwm}	-	290	-	Hz
Minimum Brightness	V control	-	4.0	-	V
Maximum Brightness	V control	-	1.3	-	V

Pin Descriptions

Vin Input voltage to the inverter.

GND Inverter ground.

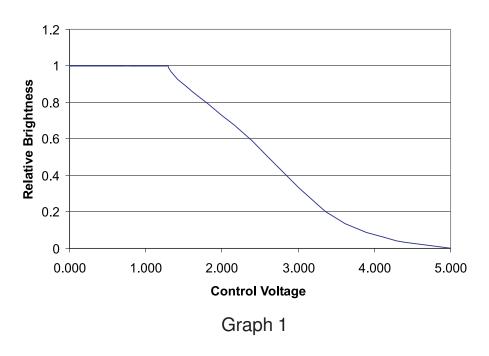
Control Analog voltage input to the onboard pulse width modulator. Graph 1 shows the

relationship between Vcontrol and relative display brightness.

Enable Inverter Enable.

Application Information

The SFW series of inverters is designed to power one cold cathode fluorescent lamp from a nonregulated DC power source. Enabling the inverter is accomplished by applying a voltage greater than V_{thon} to the Enable pin of the inverter.


Dimming the inverter is accomplished by applying a DC voltage to the Control pin. The applied DC voltage adjusts the duty cycle of the onboard PWM controller thereby changing the brightness of the backlight. Graph 1 shows the typical brightness versus voltage applied to the control pin.

As with all inverters, it is important to take notice that the voltage present at the output pins is quite high and requires special care to be taken when integrating into the final application. The inverter should not be mounted closer than 0.250" (6.4mm) to any other conductive material. In general, the mounting hardware should be nonconductive. Open frame inverters, like the SFW, are not recommended in applications which require operation above 10,000 feet (3000 meters).

To improve the electrical efficiency of the overall application, the input harness cabling should be less than 12 inches (30 cm). The cable assembly between the inverter and the display is best kept below 4 inches (10 cm). If there are any questions or concerns, please feel free to contact ERG for exceptions or recommendations.

Relative Brightness vs Control Voltage

Analog Dimming

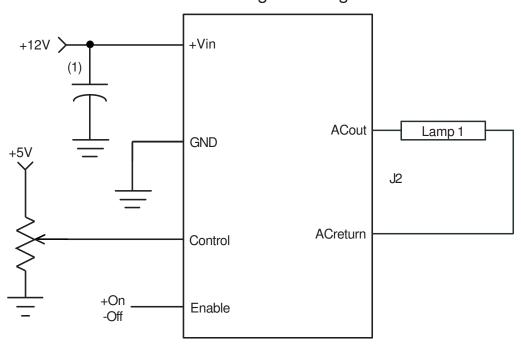


Figure 1

(1) Low ESR type input by-pass capacitor (22 uF - 220 uF) may be required to reduce reflected ripple, and to improve power supply transient response.

Endicott Research Group, Inc. (ERG) reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by ERG is believed to be accurate and reliable. However, no responsibility is assumed by ERG for its use.