

OVERVIEW

The 5075 series are miniature VCXO ICs that provide a wide frequency pulling range, even when using miniature crystal units for which a wide pulling range is difficult to provide. They employ a recently developed varicap diode fabrication process that provides a wide frequency pulling range and good linearity without any external components. Also, they employ a regulated voltage drive oscillator circuit that significantly reduces current consumption, crystal current, and oscillation characteristics supply voltage dependency. The 5075 series are ideal for miniature, wide pulling range, low power consumption, VCXO modules.

FEATURES

- VCXO with recently developed varicap diode built-in
- New fabrication process that significantly reduces parasitic capacitance and provides wide pulling range even when using miniature crystal units
- Regulated voltage drive oscillator circuit for reduced power consumption, crystal drive current, and oscillation characteristics voltage dependency
- Wide frequency pulling range
 - ± 190ppm (B1 version, f = 27MHz) (Crystal: γ = 300, C0 = 1.5pF)
- Operating supply voltage range: 2.25V to 3.63V
- Oscillation frequency range (for fundamental oscillation): 20MHz to 55MHz (varies with version)

- Low current consumption: 1.0mA (B1 version, f = 27MHz, no load, V_{DD} = 3.3V)
- Frequency divider built-in
 - Selectable by version: f_O , $f_O/2$, $f_O/4$, $f_O/8$, $f_O/16$
 - Frequency divider output for 1.3MHz (min) low frequency output
- VC pin input resistance: $10M\Omega$ (min)
- CMOS output
- Two types of pad layout selectable by mounting method
 - A× version: for Flip Chip Bonding
 - B× version: for Wire Bonding
- Package: Wafer form (WF5075××) Chip form (CF5075××)

APPLICATIONS

■ 2.5 × 2.0mm, 3.2 × 2.5mm size miniature VCXO modules for digital mobile TV tuner, digital TV (PDP, LCD), PND (Personal Navigation Device), etc.

ORDERING INFORMATION

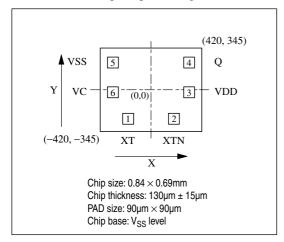
Device	Package
WF5075××-4	Wafer form
CF5075××-4	Chip form

SERIES CONFIGURATION

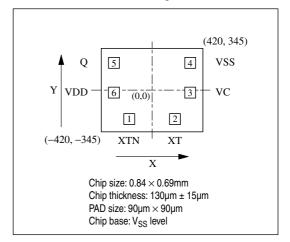
Operating	DADI-	Recommended				uency and version name *2		
supply voltage range [V]	PAD layout	operating frequency range *1 [MHz] f _O output		f ₀ /2 output	f _O /4 output	f _O /8 output	f ₀ /16 output	
	Tip Chip Donding	20 to 40	5075A1	5075A2	5075A3	5075A4	5075A5	
2.25 to 3.63	Flip Chip Bonding	Flip Chip Bonding	40 to 55	(5075AJ)	(5075AK)	(5075AL)	(5075AM)	(5075AN)
2.23103.03	Wire Bonding	20 to 40	5075B1	5075B2	5075B3	5075B4	5075B5	
		40 to 55	5075BJ	(5075BK)	5075BL	(5075BM)	(5075BN)	

^{*1.} The recommended operating frequency is a yardstick value derived from the crystal used for NPC characteristics authentication. However, the oscillation frequency range is not guaranteed. Specifically, the characteristics can vary greatly due to crystal characteristics and mounting conditions, so the oscillation characteristics of components must be carefully evaluated.

VERSION NAME


Device	Package	Version name		
WF5075××-4	Waferform	<u>WF5</u> 075 □ □ −4		
CF5075××-4	Chip form	Form WF: Wafer form Oscillation frequency range, frequency divider function CF: Chip (Die) form Pad layout type A: for Flip Chip Bonding B: for Wire Bonding		

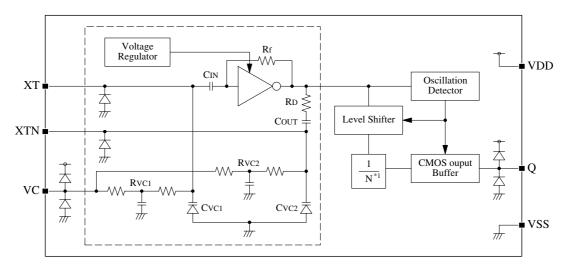
^{*2.} Versions in parentheses () are under development. Please contact us for further details.


PAD LAYOUT

(Unit: µm)

■ 5075A× (for Flip Chip Bonding)

■ 5075B× (for Wire Bonding)



PAD DIMENSIONS PIN DESCRIPTION

Pad No.	Pad dimensions [μm]				
rau No.	Х	Y			
1	-189	-240			
2	189	-240			
3	315	-21			
4	315	225			
5	-315	225			
6	-315	-21			

Pad	No.	Pin	I/O	Description
5075A×	5075B×	PIII	1/0	Description
1	2	XT	I Crystal connection pin (amplifier input)	
2	1	XTN	0	Crystal connection pin (amplifier output)
3	6	VDD	-	(+) supply pin
4	5	Q	0	Clock output pin
5	4	VSS	-	(–) supply pin
6	3	VC	I	Oscillation frequency control voltage input pin (positive polarity) (frequency increases with increasing voltage)

BLOCK DIAGRAM

 $^*1. N = 1, 2, 4, 8, 16$

ABSOLUTE MAXIMUM RATINGS

$$V_{SS} = 0V$$

Parameter	Symbol	Conditions	Rating	Unit
Supply voltage range	V _{DD}	Between VDD and VSS	-0.5 to +5.0	V
Input voltage range*1	V _{IN}	Input pins	-0.5 to V _{DD} + 0.5	V
Output voltage range*1	V _{OUT}	Output pins	-0.5 to V _{DD} + 0.5	V
Storage temperature range	T _{STG}	Wafer form, chip form	-65 to +150	°C
Output current	I _{OUT}	Q pin	± 20	mA

^{*1.} $\ensuremath{V_{DD}}$ is a $\ensuremath{V_{DD}}$ value of recommended operating conditions.

Note. Absolute maximum ratings are the values that must never exceed even for a moment. This product may suffer breakdown if any one of these parameter ratings is exceeded. Operation and characteristics are guaranteed only when the product is operated at recommended supply voltage range.

RECOMMENDED OPERATING CONDITIONS

$$V_{SS} = 0V$$

Parameter	Symbol	Co	nditions		Rating	Unit	
Parameter	Syllibol	00	nations	Min	Тур	Max	Oilit
Operating supply voltage	V _{DD}	C _{LOUT} ≤ 15pF		2.25	-	3.63	V
Input voltage	V _{IN}	VC pin		V _{SS}	-	V _{DD}	V
Operating temperature	T _{OPR}			-40	-	+85	°C
Oscillation fraguency*1		5075×1 to 5075×5		20	-	40	MHz
Oscillation frequency*1	f _O	5075×J to 5075×N		40	-	55	MHz
Output fraguancy 6			5075×1 to 5075×5	1.25	-	40	MHz
Output frequency	fout	C _{LOUT} ≤ 15pF	5075×J to 5075×N	2.5	-	55	MHz

^{*1.} The oscillation frequency is a yardstick value derived from the crystal used for NPC characteristics authentication. However, the oscillation frequency range is not guaranteed. Specifically, the characteristics can vary greatly due to crystal characteristics and mounting conditions, so the oscillation characteristics of components must be carefully evaluated.

Note. Mount a ceramic chip capacitor that is larger than 0.01µF proximal to IC (within approximately 3mm) between VDD and VSS in order to obtain stable operation of 5075 series. In addition, the wiring pattern between IC and capacitor should be as wide as possible.

ELECTRICAL CHARACTERISTICS

5075×1 to 5075×5

 V_{DD} = 2.25 to 3.63V, V_{C} = 0.5 V_{DD} , V_{SS} = 0V, Ta = -40 to +85°C unless otherwise noted.

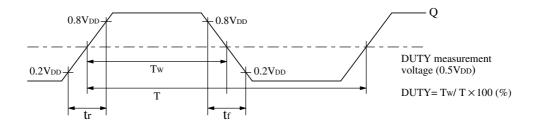
Dawamatan	Combal	Conditions			Rating		I Imia
Parameter	Symbol	Conditions	Conditions				Unit
		no load fr = 27MHz f 27MHz	V _{DD} = 2.5V	_	0.7	1.4	mA
			V _{DD} = 3.3V	-	1.0	2.0	mA
		5075×2 (f _Q /2), Measurement circuit 1,	V _{DD} = 2.5V	-	0.6	1.2	mA
		no load, $f_O = 27MHz$, $f_{OUT} = 13.5MHz$	V _{DD} = 3.3V	-	0.8	1.6	mA
Current consumption		5075×3 (f _O /4), Measurement circuit 1,	V _{DD} = 2.5V	-	0.5	1.0	mA
Current consumption	I _{DD}	no load, $f_O = 27MHz$, $f_{OUT} = 6.75MHz$	V _{DD} = 3.3V	-	0.7	1.4	mA
		5075×4 (f _O /8), Measurement circuit 1,	V _{DD} = 2.5V	-	0.5	1.0	mA
		no load, $f_0 = 27MHz$, $f_{OUT} = 3.38MHz$	V _{DD} = 3.3V	-	0.6	1.2	mA
		5075×5 (f _O /16), Measurement circuit 1,	V _{DD} = 2.5V	-	0.4	0.8	mA
	no load, $f_O = 27MHz$, $f_{OUT} = 1.69MHz$ $V_{DD} = 3.3V$	V _{DD} = 3.3V	-	0.6	1.2	mA	
HIGH-level output voltage	V _{OH}	Q pin, Measurement circuit 2, I _{OH} = -2.8mA		V _{DD} – 0.4	_	_	V
LOW-level output voltage	V _{OL}	Q pin, Measurement circuit 2, I _{OL} = 2.8r	mA	-	_	0.4	V
Oscillator block built-in	R _{VC1}	- Measurement circuit 3		210	420	840	kΩ
resistance	R _{VC2}	Weasurement circuit 5		210	420	840	kΩ
			V _C = 0.3V	-	5.6	_	pF
	C _{VC1}		V _C = 1.65V	-	3.1	_	pF
Oscillator block built-in		Design value (a monitor pattern on a	V _C = 3.0V	-	1.5	_	pF
capacitance		wafer is tested), Excluding parasitic capacitance.	V _C = 0.3V	-	8.4	-	pF
	C _{VC2}		V _C = 1.65V	-	4.7	-	pF
			V _C = 3.0V	-	2.3	-	pF
VC input resistance	R _{VIN}	Measurement circuit 4, Ta = 25°C	•	10	-	-	MΩ
Modulation characteristics*1	fm	Measurement circuit 5, -3 dB frequency, $V_C = 3.3$ Vp-p, $T_C = 25$ °C, $T_C = 27$ MHz	$V_{DD} = 3.3V,$	-	25	-	kHz

^{*1.} The modulation characteristics may vary with the crystal used.

5075×J to 5075×N

 V_{DD} = 2.25 to 3.63V, V_{C} = 0.5 V_{DD} , V_{SS} = 0V, Ta = -40 to +85°C unless otherwise noted.

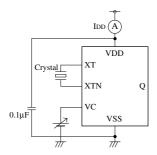
Dawamatan	Combal	Conditions		Rating		Unit	
Parameter	Symbol	Conditions		Min	Тур	Max	Oilit
		no load f 40ML = f 40ML =	V _{DD} = 2.5V	-	1.2	2.4	mA
			V _{DD} = 3.3V	-	1.6	3.2	mA
		5075×K (f _O /2), Measurement circuit 1,	V _{DD} = 2.5V	-	0.9	1.8	mA
		no load, $f_O = 48MHz$, $f_{OUT} = 24MHz$	V _{DD} = 3.3V	-	1.3	2.6	mA
Current consumption	1	5075×L (f _O /4), Measurement circuit 1,	V _{DD} = 2.5V	-	0.8	1.6	mA
Current consumption	I _{DD}	no load, $f_O = 48MHz$, $f_{OUT} = 12MHz$	V _{DD} = 3.3V	-	1.0	2.0	mA
		5075×M (f _O /8), Measurement circuit 1,	V _{DD} = 2.5V	-	0.7	1.4	mA
		no load, $f_O = 48MHz$, $f_{OUT} = 6MHz$	V _{DD} = 3.3V	-	0.9	1.8	mA
		5075×N (f _O /16), Measurement circuit 1,	V _{DD} = 2.5V	-	0.7	1.4	mA
	no load, $f_O = 48MHz$, $f_{OUT} = 3MHz$ $V_{DD} = 3.3V$		-	0.9	1.8	mA	
HIGH-level output voltage	V _{OH}	Q pin, Measurement circuit 2, I _{OH} = -2.8mA		V _{DD} - 0.4	-	-	V
LOW-level output voltage	V _{OL}	Q pin, Measurement circuit 2, I _{OL} = 2.8m	Q pin, Measurement circuit 2, I _{OL} = 2.8mA		-	0.4	V
Oscillator block built-in	R _{VC1}	Measurement circuit 3		210	420	840	kΩ
resistance	R _{VC2}	Wedsurement circuit 5		210	420	840	kΩ
			V _C = 0.3V	-	5.6	-	pF
	C _{VC1}		V _C = 1.65V	-	3.1	-	pF
Oscillator block built-in		Design value (a monitor pattern on a	V _C = 3.0V	-	1.5	-	pF
capacitance		wafer is tested), Excluding parasitic capacitance.	V _C = 0.3V	-	8.4	-	pF
	C _{VC2}		V _C = 1.65V	-	4.7	-	pF
			V _C = 3.0V	-	2.3	-	pF
VC input resistance	R _{VIN}	Measurement circuit 4, Ta = 25°C	•	10	-	-	MΩ
Modulation characteristics*1	fm	Measurement circuit 5, $-3dB$ frequency, $V_C = 3.3Vp-p$, $Ta = 25^{\circ}C$, $f_O = 48MHz$	/ _{DD} = 3.3V,	-	23		kHz


^{*1.} The modulation characteristics may vary with the crystal used.

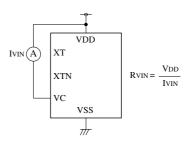
SWITCHING CHARACTERISTICS

 V_{DD} = 2.25 to 3.63V, V_{C} = 0.5 V_{DD} , V_{SS} = 0V, Ta = -40 to +85°C unless otherwise noted.

Dovometer	Cumbal	nbol Conditions		Rating				
Parameter	Symbol	Conditions	Min	Тур	Max	Unit		
Output rise time	t _r		_	2.1	4.0	ns		
Output fall time	t _f		_	2.1	4.0	ns		
Output duty cycle	Duty	Measurement circuit 6, Ta = 25°C, C _{LOUT} = 15pF, V _{DD} = 3.3V	45	50	55	%		


Switching Time Measurement Waveform

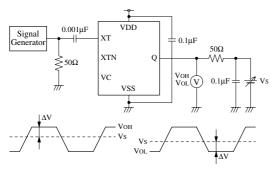
MEASUREMENT CIRCUITS


Measurement Circuit 1

Measurement parameter: I_{DD}

Measurement Circuit 4

Measurement parameter: R_{VIN}


⊥ 0.1μF

VSS

CLOUT = 15pF

Measurement Circuit 2

Measurement parameter: V_{OH} , V_{OL}

 V_S adjusted such that ΔV = $50 \times I_{OH}$.

 V_S adjusted such that ΔV = $50 \times I_{OL}$.

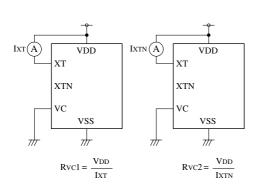
XT input signal: 1Vp-p, sine wave

$C1=33\mu F,\,R1=R2=1M\Omega$

Gain-phase

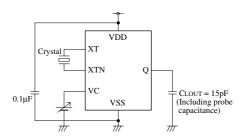
Modulaiton

Analyzer (HP 8901B)


Measurement Circuit 5 Measurement parameter: fm

VC modulation signal: 100Hz to 100kHz, 0 to V_{DD}p-p

Demodulation signal


Measurement Circuit 3

Measurement parameter: R_{VC1}, R_{VC2}

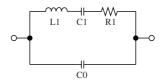
Measurement Circuit 6

Measurement parameter: Duty, t_r, t_f

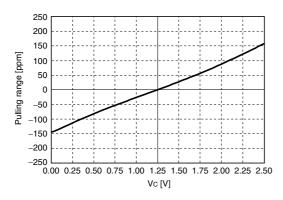
FUNCTIONAL DESCRIPTION

Oscillation Start-up Detector Function

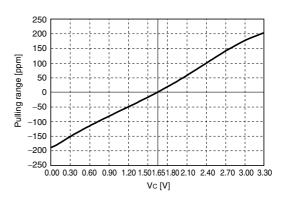
The devices also feature an oscillation start-up detector circuit. This circuit functions to disable the outputs until the oscillation starts. This prevents unstable oscillator output at oscillator start-up when power is applied.


TYPICAL PERFORMANCE (5075B1)

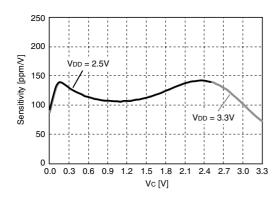
The following characteristics measured using the crystal below. Note that the characteristics will vary with the crystal used.


■ Crystal used for measurement

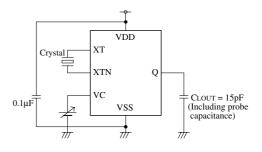
Parameter	f _O = 27MHz
C0 [pF]	1.5
γ (= C0/C1)	300


■ Crystal equivalent circuit

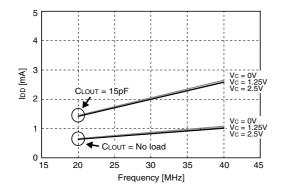
Frequency Pulling Range

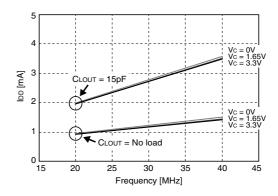


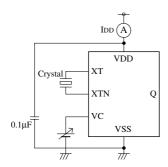
 V_{DD} = 2.5V, f_{OUT} = 27MHz, Ta = R.T.

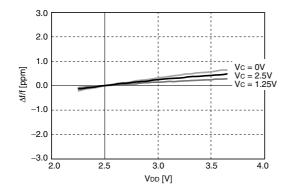


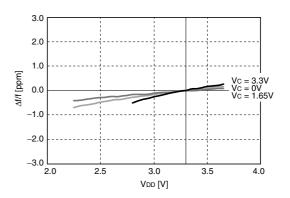
 V_{DD} = 3.3V, f_{OUT} = 27MHz, Ta = R.T.

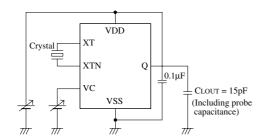

Pulling Sensitivity

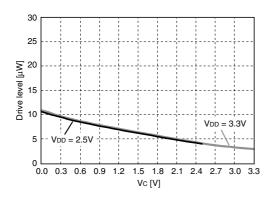

 V_{DD} = 2.5V, 3.3V, f_{OUT} = 27MHz, Ta = R.T.


Current Consumption

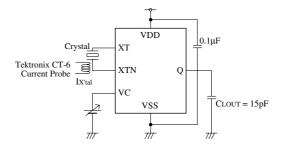

 $V_{DD} = 2.5V$, Ta = R.T.


 $V_{DD} = 3.3V$, Ta = R.T.


Frequency Stability by Supply Voltage Change

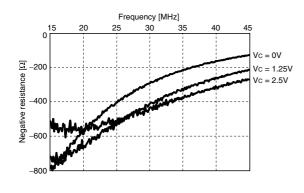

 f_{OUT} = 27MHz, \pm 0ppm at V_{DD} = 2.5V, Ta = R.T.

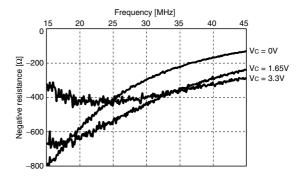
 f_{OUT} = 27MHz, \pm 0ppm at V_{DD} = 3.3V, Ta = R.T.



Drive Level

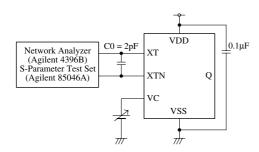
 V_{DD} = 2.5V, 3.3V, f_{OUT} = 27MHz, Ta = R.T.


Measurement circuit

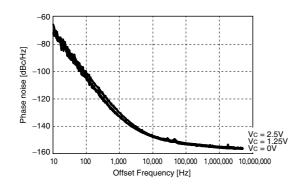

 $DL = (I_{X'tal})^2 \times Re$ DL: drive level

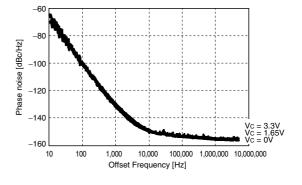
I_{X'tal}: current flowing to crystal (RMS value) Re: crystal effective resistance

Negative Resistance

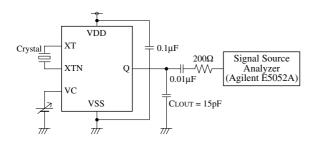


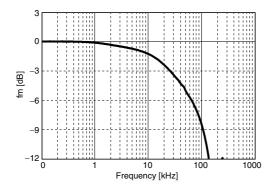
 V_{DD} = 2.5V, C0 = 2pF, Ta = R.T.


 V_{DD} = 3.3V, C0 = 2pF, Ta = R.T.

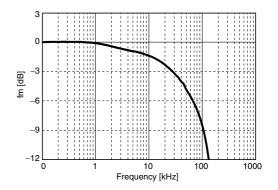

Measurement circuit

Note. "C0" value is set, concerning the actual crystal characteristics connected between XT and XTN. The data is measured with Agilent 4396B using NPC's original measurement jig. The values may vary with measurement jig and conditions.

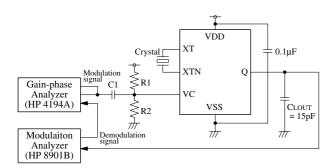

Phase Noise



 V_{DD} = 2.5V, f_{OUT} = 27MHz, Ta = R.T.

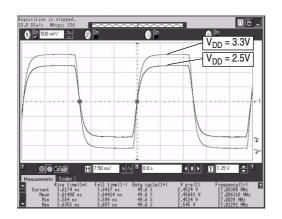

 V_{DD} = 3.3V, f_{OUT} = 27MHz, Ta = R.T.

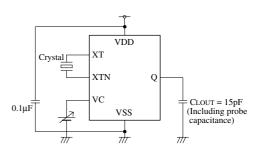
Modulation Characteristics



 V_{DD} = 2.5V, f_{OUT} = 27MHz, Ta = R.T.

 V_{DD} = 3.3V, f_{OUT} = 27MHz, Ta = R.T.


Measurement circuit


 $C1=33\mu F,\,R1=R2=1M\Omega$ VC modulation signal: 100Hz to 100kHz, 0 to $V_{DD}p\text{-}p$

Output Waveform

Measurement equipment: Oscilloscope; DSO80604B (Agilent)

$$\begin{split} V_{DD} = 2.5 \text{V, } 3.3 \text{V, } f_{OUT} = 27 \text{MHz, } V_{C} = 0.5 V_{DD}, \\ C_{LOUT} = 15 \text{pF, } \text{Ta} = \text{R.T.} \end{split}$$

Please pay your attention to the following points at time of using the products shown in this document.

- 1. The products shown in this document (hereinafter "Products") are designed and manufactured to the generally accepted standards of reliability as expected for use in general electronic and electrical equipment, such as personal equipment, machine tools and measurement equipment. The Products are not designed and manufactured to be used in any other special equipment requiring extremely high level of reliability and safety, such as aerospace equipment, nuclear power control equipment, medical equipment, transportation equipment, disaster prevention equipment, security equipment. The Products are not designed and manufactured to be used for the apparatus that exerts harmful influence on the human lives due to the defects, failure or malfunction of the Products. If you wish to use the Products in that apparatus, please contact our sales section in advance.
 - In the event that the Products are used in such apparatus without our prior approval, we assume no responsibility whatsoever for any damages resulting from the use of that apparatus.
- 2. NPC reserves the right to change the specifications of the Products in order to improve the characteristics or reliability thereof.
- 3. The information described in this document is presented only as a guide for using the Products. No responsibility is assumed by us for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of the third parties. Then, we assume no responsibility whatsoever for any damages resulting from that infringements.
- 4. The constant of each circuit shown in this document is described as an example, and it is not guaranteed about its value of the massproduction products.
- 5. In the case of that the Products in this document falls under the foreign exchange and foreign trade control law or other applicable laws and regulations, approval of the export to be based on those laws and regulations are necessary. Customers are requested appropriately take steps to obtain required permissions or appropriate government agencies.

SEIKO NPC CORPORATION

1-9-9, Hatchobori, Chuo-ku, Tokyo 104-0032, Japan Telephone: +81-3-5541-6501 Facsimile: +81-3-5541-6510 http://www.npc.co.jp/

Email: sales@npc.co.jp

ND13007-E-00 2013.02