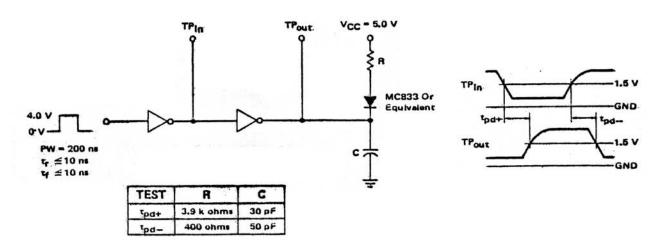


ML937 Hex Inverter

Legacy Device: Motorola MC937

This element consists of six inverter circuits.

Input Loading Factor = 1
Output Loading Factor:


937/ 837 = 7
Total Power Dissipation

937/ 837 = 90 mW typ/pkg

Propagation Dalay Time

937/ 837 = 25 ns typ

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS

ELECTRICAL CHARACTERISTICS			-	-														-		2 441		TOTAL TOTAL TOTAL TALOUT	200					
	HARA	CTEF	IST	S				-	4	,							МA						Volts				Г	
Test procedures are shown for only one	e showr	for	ylv c	one				0	1	İ					@ Test	_	20	Нон							-	-	Т	
inverter. The other inverters are tested in	r inverte	S are	testec	i.					4	i				Ten	Temperature	-	937	637	, n	× ×	`	>"	VR VCEX VCC VCCL VCCH VMAX	Vcc	CCI	V HO	7	
the same manner.									4						1-55'C	2,0	10.4	-0.5	1.40	2.10	0	4.00			4.50 5.50	20		
								OR .	4	Î				937	+25°C	2,5	11.0	-0.5	1.10	2 00	٥	4.00	4.50	00 8	5.00 4.50 5.50	50 8	8.00	
								:	4	i					(+125'C	25	80	-0.5	0.80	2 00	0	4.00		,	4.50 5	5.50	T.	
									1							_	837	837										
								12	4	1					,	0,0	11.0	-0.5	1.20	1.20 2 00 0.45 4.00	0.45	4.00		-	5 00 5 00	_		
														837	+25°C	2,0	11.0	-0.5	1.10	1 90	0.45	1.10 1.90 0.45 4.00	5.00	5.00	5.00 5.00 5.00	3 00	8 00	
															1,524	3,5	10.4	-0.5	0.95	0.95 1.80 0.50 4.00	0.50	4.00			5 00 5.00	00	,	
		P.	1 1			937 1	937 TEST LIMITS	MITS	П			80	37 TE	837 TEST LIMITS	ITS		165	TEST CURRENT / VOLTAGE APPLIED TO PINS LISTED BELOW:	LIAGE	APP	IED T	NIA O	LISTE	D BEIC			Г	
Characteristic	Symbol	Test Test	Min Max	Max Max	+25°C Min Ma	×	+125°C Min Max		Unit	Min Max		+25°C Min Max		Hin Max		, tig	_8	_₽	>"	>		>"	V. V. Verx Vcc Vcci VccHVman	V.	CCI V	N HO	1 2	Grad
Output Voltage	,		١٢.	0.40		0.40	۱	0.45	Vdc	1	0.45	1	0.45	0	0.5d V	Vdc	1		Ŀ	-			1	1	1	1	1	-
	9 ≥	~	2.50	•	2.60		2.50		2000	2.60		2.60	- 2	2.50		Vdc	•		-						=			-
Short-Circuit Current)sc	~	·	8		8 1		-3.90 mAdc	n.Adc		-3.90	· ·	-3.90		-3.75 mAde	, QC										-		1,2,7
Reverse Current	-R	-	·	2.0		2.0		0.5	+ Adr		9.0		5.0		10 µAdr	, de						-				=	-	1
Output Leakage Current	JCEX	~				20			r Adr				100		- hAde	yqc.				٠			2,14					1,7
Forward Current	1,	-	÷	-1.60		-1.60		-1.50	mAde		-1.40		-1.40	-	-1.33 mJ	mAde					-					7		-
(Total Device)	HO4!	11				32.0	* *						5 5	- : :	à	nı.Adc	(#6 #6							z .			. 2	1,3.5.7.
Switching Times												T		-	+	+	Pulse In	Pulse Out							+	+	+	
					N.				a —				8		•	* -								<u> </u>				
MC937 MC637	ė ė	3 3			2 2	9 9			_			2 2	8 8			_	-							_				-

Lansdale Semiconductor reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Lansdale does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. "Typical" parameters which may be provided in Lansdale data sheets and/or specifications can vary in different applications, and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by the customer's technical experts. Lansdale Semiconductor is a registered trademark of Lansdale Semiconductor, Inc.