

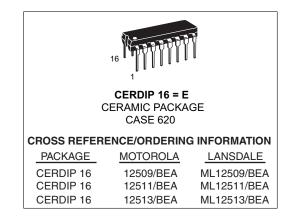
ML12509
ML12511
ML12513
MECL PLL Components
Dual Modulus Prescaler

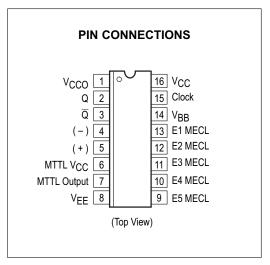
Legacy Device: Motorola 12509, 12511, 12513

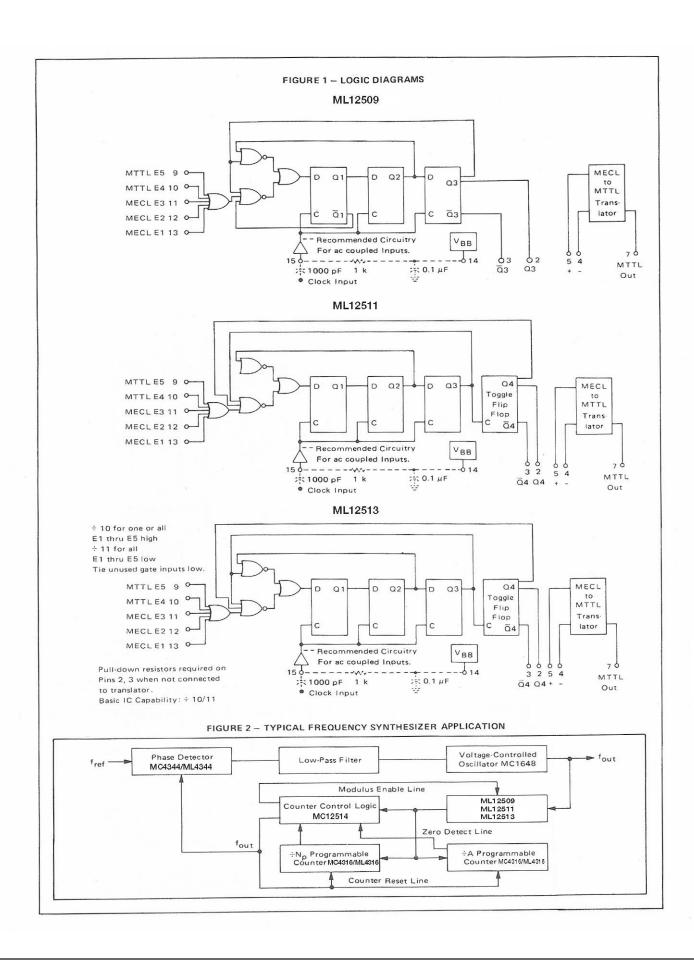
These devices are two-modulus prescalers which will divide by 5 and 6, 8 and 9, respectively. A MECL-to-MTTL translator is provided to interface directly with the Motorola MC12014 Counter Control Logic. In addition, there is a buffered clock input and MECL bias voltage source.

- ML12509 480 MHz (÷5/6), ML12511 550 MHz (÷8/9), ML12513 550 MHz (÷10/11)
- MECL to MTTL Translator on Chip
- MECL and MTTL Enable Inputs
- 5.0 or -5.2 V Operation*
- Buffered Clock Input Series Input RC Typ, 20 Ω and 4.0 pF
- VBB Reference Voltage
- 310 mW (Typ)

* When using a 5.0 V supply, apply 5.0 V to Pin 1 (VCCO), Pin 6 (MTTL VCC), Pin 16 (VCC), and ground Pin 8 (VEE). When using -5.2 V supply, ground Pin 1 (VCCO), Pin 6 (MTTL VCC), and Pin 16 (VCC) and apply -5.2 V to Pin 8 (VEE). If the translator is not required, Pin 6 may be left open to conserve DC power drain.


MAXIMUM RATINGS


Characteristic	Symbol	Rating	Unit
(Ratings above which device life ma	ay be impaired	d)	
Power Supply Voltage (V _{CC} = 0)	VEE	-8.0	Vdc
Input Voltage (V _{CC} = 0)	V _{in}	0 to VEE	Vdc
Output Source Current Continuous Surge	Ю	< 50 < 100	mAdc
Storage Temperature Range	T _{stg}	-65 to 175	°C


(Recommended Maximum Ratings above which performance may be degraded)

Operating Temperature Range	TA	-55 to 125	°C
DC Fan–Out (Note 1) (Gates and Flip–Flops)	n	70	_

NOTES: 1. AC fan-out is limited by desired system performance.

ELECTRICAL CHARACTERISTICS

Test				321		Ţē.	st Voltag	Test Voltage Values (Volts)	(Volts)							Test Cur	Test Current Values (mA)	es (mA)
remperature	νін	VIL	VIHA	VILA	VIHB	VILB	VIHT	VILT	VEE	VCC	VIHmin	VIHmin VILmin VILL VEEL	VILL	VEEL	VCCA	ب	lor	PO!
TA = 25 °C + 2.4	+2.4	+ 0.5	+ 3.895	+0.5 +3.895 +3.525 +4.22 +3.11 +2.0 +0.8	+ 4.22	+ 3.11	+ 2.0		0.0	+ 5.0	+5.0 +1.15 +0.215	+ 0.215	5 - 3.0	- 3.0	- 3.0 + 2.0	- 0.25	+ 16	- 0.4
$T_A = 125 ^{\circ}C$ + 2.4 + 0.5 + 4.0	+2.4	+ 0.5	+ 4.0	+ 3.6	+ 4.37	+ 3.14	+ 2.0	+ 0.8	0.0	+ 5.0	+ 1.27	+ 0.26	- 3.0	- 3.0	+ 2.0	+4.37 +3.14 +2.0 +0.8 0.0 +5.0 +1.27 +0.26 -3.0 -3.0 +2.0 -0.25	+ 16	- 0.4
$T_A = -55 ^{\circ}C$ + 2.4 + 0.5 + 3.745	+2.4	+ 0.5	+ 3.745	+ 3.5	+ 4.12	+ 3.04	+ 2.0	+ 0.8	0.0	+ 5.0	+ 1.02	+ 0.165	- 3.0	- 3.0	+ 2.0	+4.12 +3.04 +2.0 +0.8 0.0 +5.0 +1.02 +0.165 -3.0 -3.0 +2.0 -0.25	+ 16	- 0.4

		Lir	Limits			Units			TES	TEST VOLTAGE APPLIED TO PINS BELOW	SE APPL	IED TO	PINS	SELOW		
+ 25 °C		+	+ 125 °C	- 55	- 55 °C		0.	inouts	reference	d are for	OIL pack	age, ch	eck Pi	Pinouts referenced are for DIL package, check Pin Assignments	ents	
Subgroup 1 S	S	npa	Subgroup 2	Subgr	Subgroup 3				Ŭ	Output Load = 100 Ω to + 3.0 V	ad = 100	Ω to +	3.0 V			
Min Max N		Min	Max	Min	Мах		ΝМ	VIL.	VIHA/B	VILA/B	Vcc	VEE	CP1	IOH/OL	_	P.U.T.
4.03 4.22 4.		4.135	4.37	3.88	4.12	^	9, 10	9, 10	11 - 13	11 - 13	1, 16	ω	15			2, 3 (Note 2)
2.70 4.5 3.0		3.00	4.5	2.40	4.5	>			5	4	9	ω		10H		7
3.11 3.44 3.14		4	3.515	3.04	3.405	۸	9, 10	9, 10	11 - 13	11 - 13	1, 16	ω	15			2, 3 (Note 2)
0.10 0.80 0.10	0.10		0.66	0.10	1.00	۸			4	ro	9	ω		- Jo		7
4.01 4.5 4.115	4.11	ıo	4.5	3.86	4.5	۸		9, 10	11 - 13	11 - 13	1, 16	ω	15			2, 3 (Note 3)
3.11 3.46 3.14			3.535	3.04	3.425	>		9, 10	11 - 13	11 - 13	1, 16	80	15			2, 3 (Note 3)
3.67 3.87						>					1, 16	ω			41	41
- 65 - 20 - 65	9	10	- 20	- 65	- 20	шА		7	2	4	ω	ω				7
- 80	- 8(- 88		mA					1, 16	8				8
5.2			5.2		5.2	mA			4	2	9	8				9

Power Supply Voltage = 5.0 V, Power Supply Voltage = -5.2 V is guaranteed but not tested.
 See Sequence Table 1.
 See Sequence Table 2.

ELECTRICAL CHARACTERISTICS

Test						<u>e</u>	st Voltag	Test Voltage Values (Volts)	(Volts)							Test Cui	Test Current Values (mA)	es (mA)
Temperature	νін	VIL	VIНА	VILA	VIHB	VILB VIHT		VILT	VEE	Vcc	VIHmin	VCC VIHmin VILmin VILL VEEL	VILL	VEEL	VCCA	<u>-</u> -	lor	P.
$T_A = 25 ^{\circ}C$ + 2.4 + 0.5 + 3.895 + 3.525 + 4.22 + 3.11 + 2.0 + 0.8 0.0	+2.4	+ 0.5	+ 3.895	+ 3.525	+ 4.22	+ 3.11	+ 2.0	+ 0.8	0.0	+ 5.0	+ 1.15	+5.0 +1.15 +0.215 -3.0	- 3.0	- 3.0	+ 2.0	-3.0 +2.0 -0.25	+ 16	- 0.4
TA = 125 °C + 2.4 + 0.5	+ 2.4	+ 0.5	+ 4.0	+ 3.6	+ 4.37	+3.14	+ 2.0	+ 0.8	0.0	+ 5.0	+ 1.27	+ 0.26	- 3.0	- 3.0	+ 2.0	+4.37 +3.14 +2.0 +0.8 0.0 +5.0 +1.27 +0.26 -3.0 -3.0 +2.0 -0.25 +16	+ 16	- 0.4
TA = -55 °C + 2.4	+2.4	+ 0.5	+ 0.5 + 3.745	+ 3.5	+4.12 +3.04 +2.0 +0.8	+ 3.04	+ 2.0	+ 0.8	0.0	+ 5.0	+ 1.02	+ 0.165	- 3.0	- 3.0	+ 2.0	0.0 +5.0 +1.02 +0.165 -3.0 -3.0 +2.0 -0.25	+ 16	- 0.4

Symbol	Parameter			Lin	Limits			Units			TEST VOLT	AGE APP	LIED TO	TEST VOLTAGE APPLIED TO PINS BELOW	
		+24	+ 25 °C	+ 12	+ 125 °C	- 55	- 55 °C		Pin	outs refe	erenced are fo	or DIL pac	kage, che	Pinouts referenced are for DIL package, check Pin Assignments	ents
	Functional Parameters:	Subgroup 1	roup 1	Subgr	Subgroup 2	Subgr	Subgroup 3				Output	_oad = 10	Output Load = 100 \(\Omega \) to + 3.0 V	.o v	
		Min	Мах	Min	Max	Min	Max		Ν	VIL	VIHA/B	VILA/B	VCC	VEE	P.U.T.
INT H	Input Current High		250		400		400	Рη		9, 10	9, 10 11 - 13, 15		1, 16	8	11, 12, 13, 15
INH2	Input Current High	2.0	6.0	2.0	6.4	1.7	6.0	ΨМ			4,5	4, 5	9	80	4, 5
INH3	Input Current High	1.0	3.0	1.0	3.6	0.7	3.0	mA			4	2	9	8	. 22
INH4	Input Current High		100		100		100	μА	9, 10				1, 16	80	9, 10
-N	Input Current Low	- 10		- 10		- 10		ΑΉ					1, 16	8, 15, 11 - 13	11, 12, 13, 15
IN.	Input Current Low	- 1.6		- 1.6		- 1.6		mA		9, 10			1, 16	8	9, 10

^{1.} Power Supply Voltage = 5.0 V, Power Supply Voltage = -5.2 V is guaranteed but not tested.
* ELECTRICAL CHARACTERISTICS: This device is designed to meet the dc specifications shown in the test table after thermal equilibrium has been established. Outputs are terminated through a 100 Ω resistor to + 3.0 V.

Test						Te	st Voltag	Test Voltage Values (Volts)	(Volts)							Test Cur	Test Current Values (mA)	es (mA)
Temperature	ΛIH	VIL	VIHA	VILA	VIHB	VIHB VILB VIHT VILT VEE	VIHT	VILT	VEE	Vcc	VIHmin	VCC VIHmin VILmin VILL VEEL	VILL	VEEL	VCCA	ب	loL	된
$T_A = 25 ^{\circ}C$ + 2.4 + 0.5 + 3.895 + 3.525 + 4.22 + 3.11 + 2.0	+ 2.4	+ 0.5	+ 3.895	+ 3.525	+ 4.22	+ 3.11	+ 2.0	+ 0.8	0.0	+ 5.0	+ 1.15	+0.8 0.0 +5.0 +1.15 +0.215 -3.0 -3.0 +2.0	- 3.0	- 3.0	_	- 0.25	+ 16	- 0.4
$T_A = 125 \circ C$ + 2.4 + 0.5 + 4.0 + 3.6	+ 2.4	+ 0.5	+ 4.0	+ 3.6	+ 4.37	+ 4.37 + 3.14 + 2.0	+ 2.0	+ 0.8	0.0	+ 5.0	+ 1.27	+ 0.26	- 3.0	- 3.0	+ 2.0	+0.8 0.0 +5.0 +1.27 +0.26 -3.0 -3.0 +2.0 -0.25	+ 16	- 0.4
$T_A = -55 ^{\circ}C$ + 2.4 + 0.5 + 3.745 + 3.5	+2.4	+ 0.5	+ 3.745	10	+ 4.12	+ 3.04	+ 2.0	+ 0.8	0.0	+ 5.0	+ 1.02	+4.12 +3.04 +2.0 +0.8 0.0 +5.0 +1.02 +0.165 -3.0	- 3.0	- 3.0 + 2.0	+ 2.0	- 0.25	+ 16	- 0.4

SWITCHING CHARACTERISTICS

Symbol	Parameter			Limits	its			Units		TE	ST VOLTAG	E APPLIE	TEST VOLTAGE APPLIED TO PINS BELOW	BELOW	
		+ 25 °C	သ	+ 125 °C	2 _° د	- 55	25 °C		Pino	uts referenc	ed are for E	IL packag	Pinouts referenced are for DIL package, check Pin Assignments	n Assignm	ients
	Functional Parameters:	Subgroup 9	6 dno	Subgroup 10	01 dnc	Subgroup 11	11 dn				Output Load = 100 Ω to + 3.0 V	വ = 100 വ	to + 3.0 V		
	(Fig. 5)	Min	Мах	Min	Мах	Min	Max		VILL	VILmin	NIV	VouT	VCCA	VEEL	P.U.T.
tPHH [†]	Propagation Delay (15+2+)		8.1		9.4		8.1	su	9, 10	11 - 13	15	2, 3	1, 6, 16	8	2,3
tPHH	Propagation Delay (5+ 7+)		8.1		9.6		8.1	SU	9, 10	11 - 13	15	2,3	1, 6, 16	8	2, 3
tPLL	Propagation Delay (15+2-)		7.5		8.7		7.5	su	9, 10	11 - 13	15	2, 3	1, 6, 16	8	7
tPLL	Propagation Delay (5-7-)		6.5		7.6		6.5	SU	9, 10	11 - 13	15	2, 3	1, 6, 16	ω	7
		Min	Тур	Min	Мах	Min	Max		VILL	VILmin	NIV	VouT	VCCA	VEEL	P.U.T.
tSetup 1	Setup Time MECL	5.0		5.0		5.0		SU	9, 10	11 - 13	9 - 13		1, 6, 16	80	9 - 13
tSetup 2	Setup Time MTTL	5.0		5.0		5.0		Su	9, 10	11 - 13	9 - 13		1, 6, 16	8	9 - 13
tRel 1	Release Time MECL	5.0		5.0		5.0		SU	9, 10	11 - 13	9 - 13		1, 6, 16	8	9 - 13
tRel 2	Release Time MTTL	5.0		5.0		5.0		Su	9, 10	11 - 13	9 - 13		1, 6, 16	8	9 - 13
		Min	Тур	Min	Typ	Min	Тур		VILL	VILmin	VIN	VouT	VCCA	VEEL	P.U.T.
fmax +5/6	(Fig. 6) Toggle Frequency ML12509	480	520	420	440	420	200	MHz			15	2	1, 6, 16	8 - 13	2
6/8÷	ML12511	500	550	500	550	200	550	MHz	A 57		15	7	1, 6, 16	8 - 13	2
÷10/11	ML12513	550	009	200	540	200	009	MHz			15	2	1, 6, 16	8 - 13	23

Pulse

Generator

#4

MC10109 or equiv.

A O

PRF = 10 MHz

Pulse Generator 3:

PRF = 2.0 MHz

PW = 50% Duty Cycle

 $t + = t - = 2.0 \pm 0.2 \text{ ns}$

PW = 50% Duty Cycle $t + = t - = 5.0 \pm 0.5$ ns

All Pulse Generators are EH 137 or equiv. Pulse Generators 1, 2 and 4:

O Vout (Scope Channel B) \bigcirc V_{in} $V_{CC} = 2.0 \text{ V}$ 0.1 μF \bigcirc V_{out} 50 Pulse Generator **≨**100 #1 \circ V_{in} E1 13 🔾 2 Ω E2 12 0 E3 11 0-Pulse -0 10 0 E4 Generator ○ V_{out} #2 100 3 9 0 E5 Ω 15 C С 14 O V_{BB} 1950 MECL Pulse Generator 🕞 to MTTL #3 50 Translator 8 < C_T

The 1950 Ω resistor at Pin 7 and the scope termination impedance constitute a 40:1 attenuator probe.

C_T = 15 pF = total parasitic capacitance which includes probe, wiring, and load capacitance.

All input and output cables to the scope are equal lengths of 50 Ω coaxial cable.

Unused output connected to a 50 Ω resistor to ground.

Figure 5. AC Test Circuit

NOTES: 1. Test outputs of the device must be tested by sequencing through the truth table. All input, power supply and

50

All resistors are +1%

(Scope Channel A)

ground voltages must be maintained between tests. The clock input is the waveform shown.

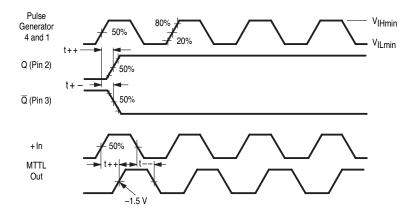
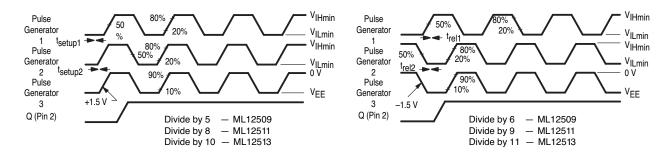
2. In addition to meeting the output levels specified, the device must divide by 5 or 8 during this test. The clock input is the waveform shown.

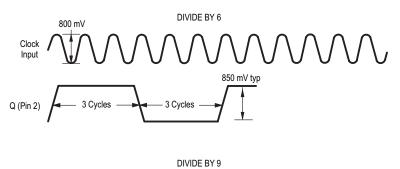
In addition to meeting the output levels specified, the device must divide by 6 or 9 during this test. The clock input is the waveform shown. Clock Input VIHmax VILmin

 $V_{EE} = -3.0 \text{ V}$

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 Ω resistor to -2.0 V. Test procedures are shown for only one gate. The other gates are tested in the same manner.

Figure 3. AC Voltage Waveforms


Figure 4. Setup and Release Time Waveforms

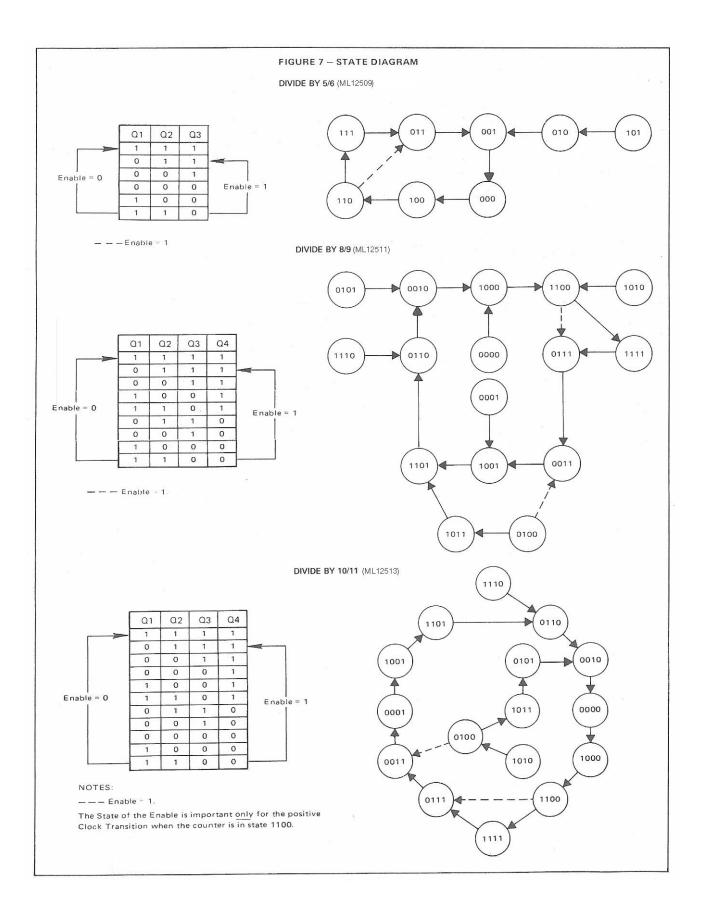
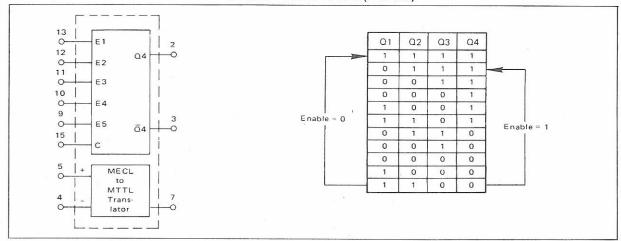
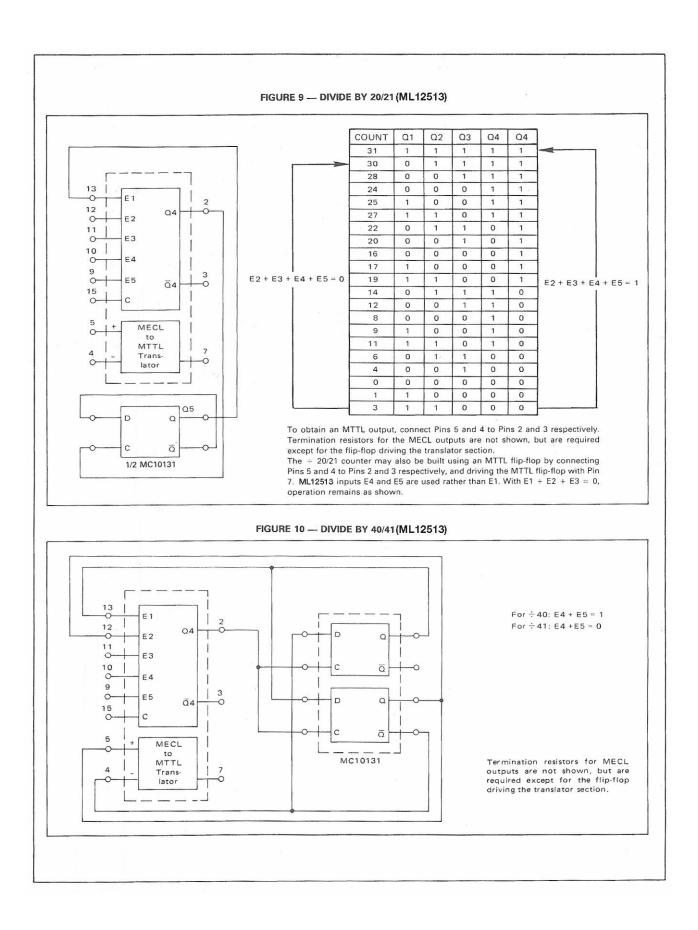

♀ V_{CC} = 2.0 V to Scope $5.0\,\mu F$ 13 E1 12 Q (To Scope) \bigcirc VEE O -O-11 E2 E3 10 E4 E5 $\overline{\mathsf{Q}}$ 0.1 μF 15 1.0 k 14 V_{BB} 0.1 μF \$ \$ 0.1 μF V_{EE} = −3.0 V

Figure 6. Maximum Frequency Test Circuit

Unused output connected to a 50 Ω resistor to ground




APPLICATIONS INFORMATION

The primary application of these devices is as a highspeed variable modulus prescaler in the divide by N section of a phase-locked loop synthesizer used as the local oscillator of two-way radios. The theory and advantages of variable modulus prescaling, along with typical applications, are covered in Motorola's "Electronic Tuning Address Systems" (SG72).

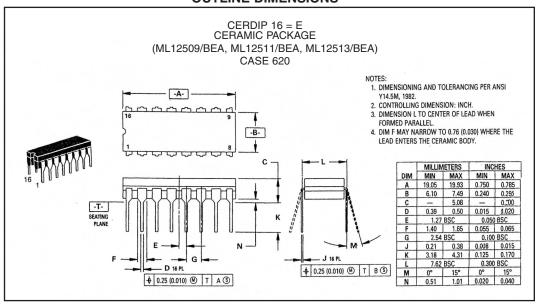

Proper VHF termination techniques should be followed when the clock is separated from the prescaler by any appreciable distance. In their basic form, these devices will divide by 5/6, 8/9, or 10/11. Division by 5, 8, or 10 occurs when any one or all of the five gate inputs E1 through E5 are high. Division by 6, 9, or 11 occurs when all inputs E1 through E5 are low. (Unconnected MTTL inputs are normally high, unconnected MECL inputs are normally low). With the addition of extra parts, many different division configurations may be obtained (20/21, 40/41, 50/51, 100/101, etc.) A few of the many configurations are shown below, only for the ML12513

FIGURE 8 — DIVIDE BY 10/11 (ML12513)

OUTLINE DIMENSIONS

Lansdale Semiconductor reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Lansdale does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. "Typical" parameters which may be provided in Lansdale data sheets and/or specifications can vary in different applications, and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by the customer's technical experts. Lansdale Semiconductor is a registered trademark of Lansdale Semiconductor, Inc.