

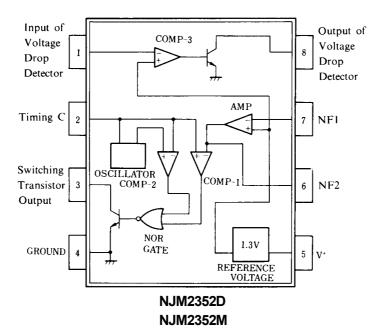
LOW POWER SWITCHING REGULATOR

■ GENERAL DESCRIPTION

The NJM2352 is the industry's first monolithic low power switching regulators available in an 8-lead mini-DIP, and designed specifically for battery operated instruments. They each contain a 1.3V temperature compensated bandgap reference, adjustable free running oscillator, voltage comparator, low battery detection circuitry, and a 200mA switch transistor with all of the functions required to make a complete low power switching regulator.

These regulators can achieve up to 80% efficiency in most applications while being able to operate over a wide input supply voltage range, 2.6V to 24V at a very low quiescent drain of $280\mu A$.

The NJM2352 can be used as a building block in three basic applications: step-up, step-down and inverting.


■ FEATURES

- Operating Voltage (2.6V to 24.0V)
- Low Operating Current
- Internal Low Voltage Detect Circuit
- Pulse Width Modulation Control Circuit
- Package Outline

DIP8, DMP8

Bipolar Technology

■ BLOCK DIAGRAM

■ PACKAGE OUTLINE

NJM2352D

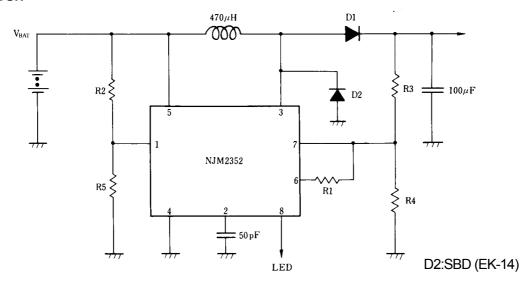
NJM2352M

■ ABSOLUTE MAXIMUM RATINGS

 $(Ta = 25^{\circ}C)$

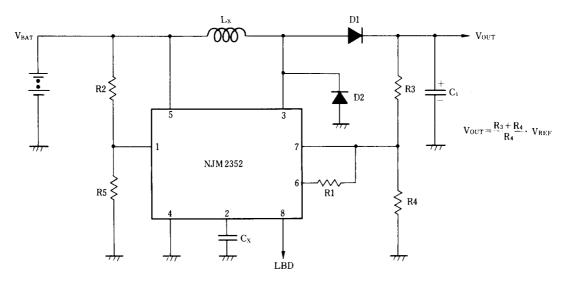
PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V ⁺	24	V
Power Dissipation	P_D	(DIP8) 500 (DMP8) 300	mW mW
Operating Temperature Range	T _{opr}	-40 to + 85	°C
Storage Temperature Range	T _{stg}	-40 to +125	°C

■ ELECTRICAL CHARACTERISTICS

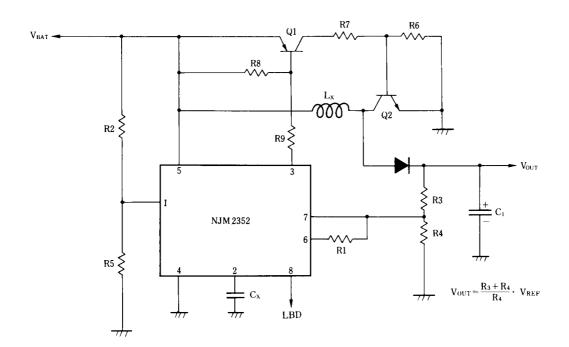

DC Electrical Characteristics (V+ = 6V, Ta = 25°C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current (1)	I _{CC} (1)		-	275	350	μA
Operating Current (2)	I _{CC} (2)	V ⁺ = 24V	-	400	550	μΑ
Reference Voltage	V_{REF}		1.24	1.31	1.38	V
Sw. Saturation Voltage	V_{SW}	I _{SW} = 100mA	-	0.2	0.4	V
Sw. Current	I _{SW}	V _{SW} = 0.4V	100	200	-	mA
Sw. Leakage Current	Iswo	V3 _{PIN} = 24V	-	0.1	10	μA
Operating Frequency	Fo	C _X = 50pF	40	50	60	kHz
Low Battery Output Current	I _{LED} (L)	V _{OPIN} = 1.1V, V _{OPIN} = 0.4V	300	800	-	μΑ
Low Battery Output Leakage Current	I _{LED} (H)	V _{OPIN} = 1.4V, V _{OPIN} = 6V	-	0.1	5	μΑ

AC Electrical Characteristics (STEP-UP. Ta = 25°C)

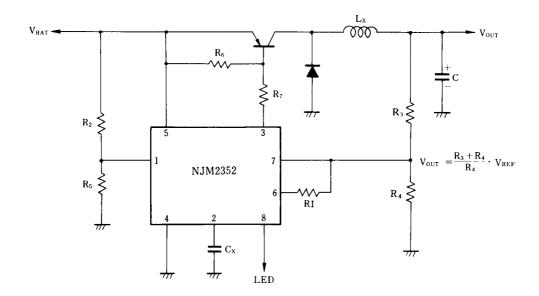

		,				
PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage (9V Set)	V _{O(9)}	$V^{+} = 4.5V, I_{O} = 10mA$	8.51	9.00	9.49	V
Load Regulation (9V Set)	ΔV_O - I_O (9)	$V^{+} = 4.5V$, $I_{O} = 2$ to 17mA	-	100	200	mV
Line Ragulation (9V Set)	ΔV_{O} - $V_{IN}(9)$	V^{+} = 4.5V to 8.1V, I_{O} = 10mA	-	50	200	mV
Output Voltage (5V Set)	I _{LED} (L)	$V^{+} = 2.6V, I_{O} = 10mA$	4.72	5.00	5.28	V
Output Voltage (24V Set)	I _{LED} (H)	$V^{+} = 12V, I_{O} = 4mA$	22.7	24.0	25.3	V

■ TEST CIRCUIT

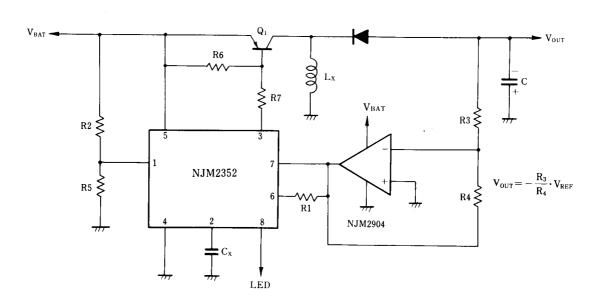


■ TYPICAL APPLICATION

1. Step-Up Switching Regulator (Low Current)



2. Step-Up Switching Regulator (High Current)



■ TYPICAL APPLICATION

3. Step-Down Switching Regulator

4. Inverting Switching Regulator

■ DESIGN EQUSTIONS

Component	Step Up	Step Down	Inverting
R ₁	R ₁ =R ₃ ×10	R ₁ =R ₃ ×10	R ₁ =R ₃ ×10
R ₂	$\frac{V_{\text{TH}} - V_{\text{REF}}}{5\mu A}$	$\frac{V_{\text{TH}} - V_{\text{REF}}}{5\mu\text{A}}$	$\frac{V_{TH} - V_{REF}}{5\mu\mathrm{A}}$
R ₃	Vout – Vref	Vout — Vref	<u>Vоит</u> I1
R ₄	VREF I1	VREF I1	Vref I1
R ₅	261Ω	261Ω	261Ω
Cx (pF)	$\frac{2.14\times10^6}{F_O(Hz)}$	2.14×10 ⁶ F _O	2.14×10 ⁶ F _O
Lx	0.3 · VBAT · (VOUT — VBAT) Fo · ILOAD · VOUT	0.3·(Vout) Fo·Iload	$\frac{0.3 \cdot V_{\text{BAT}} \cdot \left V_{\text{OUT}} \right }{\text{Fo} \cdot \left L_{\text{DAD}} \cdot \left(V_{\text{BAT}} + \left V_{\text{OUT}} \right \right) \right }$
C ₁	$\frac{0.15 I_{\text{LOAD}} (2 V_{\text{OUT}} - V_{\text{BAT}})^2}{F_0 \cdot V_{\text{OUT}} \cdot V_{\text{R}} \cdot V_{\text{BAT}}}$	ILOAD 4Fo⋅VR	$\frac{0.15 \cdot load \cdot (VBAT + 2 Vout)^2}{Fo \cdot VBAT \cdot (VBAT + Vout) \cdot VR}$
R ₆	35 · VBAT ILOAD · VOUT	35 Iload	$\frac{35 \cdot V_{BAT}}{I_{LOAD} \cdot (V_{BAT} + \left V_{OUT} \right)}$
R ₇	$\frac{5 \cdot (V_{BAT})^2}{I_{LOAD} \cdot V_{OUT}}$	5·V _{BAT} I _{LOAD}	$\frac{5 \cdot (V_{BAT})^2}{I_{LOAD} \cdot (V_{BAT} + V_{OUT})}$
R ₈	350 · V _{BAT}		
R ₉	50(Vbat) ² Iload · Vout		

 $I_1 = 100 \mu A$

 V_{TH} : low battery detection voltage. Ripple Voltage at V_R : I_1 = 50 to 100 μA .

■ DESCRIPTION

The NJM2352 is a micro-power switching regulator control IC suitable for a equipment of battery operation and may be used as step-up, step-down and inverting regulators.

The NJM2352 contains a reference, oscillator, amplifier, comparator, detector of input voltage drop and switching transistor. The output voltage is controlled by PWM method.

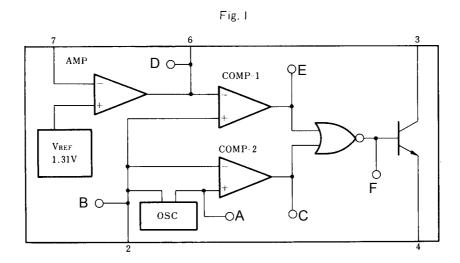
The NJM2352 applies a bandgap as a reference voltage. The oscillator is composed of putting one capacitance (Cx) to the pin 2. The amplifier is 80dB open-loop voltage gain and 1MHz band width. By adding adequate resistors to the pin 1, the indicating signal comes when the input voltage drops more than designed input voltage. Switching transistor is open collector.

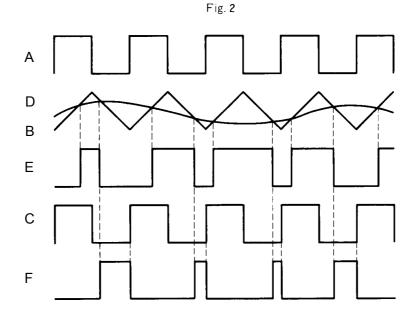
■ TERMINAL DESCRIPTION

TERMINAL NO.	TERMINAL ITEMS	FUNCTION	INSIDE EQUIVALENT CIRCUITS
1	Input of Voltage Drop Detector	Inverting input Terminal of comparator-3. When input voltage drops than non-inverting input voltage, comparator drives indicator output transistor.	
			V+
8	Output of Voltage Drop Detecctor	Open collector output transistor for driving LED, LCD etc.	GND

■ TERMINAL DESCRIPTION

TERMINAL NO.	TERMINAL ITEMS	FUNCTION	INSIDE EQUIVALENT CIRCUITS
2	Timing C	Connecting timing for deciding oscillator frequency.	COMP-2 COMP-1 2 GND
3	Switching Transistor Output	Open collector Output of switching transistor.	NOR GATE 200 k 5 k GND
4	GROUND	Ground	
5	V ⁺	Supply voltage terminal.	


■ TERMINAL DESCRIPTION


TERMINAL NO.	TERMINAL ITEMS	FUNCTION	INSIDE EQUIVALENT CIRCUITS
6	NF2	Terminal from connecting point of AMP output and COMP-1 inverting input.	V+ V+ V+ V+ VREF
7	NF1	Inverting input of amplifier.	7 6

■ PRINCIPLE OF OPERATION

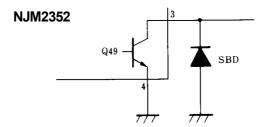
The NJM2352 circuit block is shown on Fig. 1 and timing chart on Fig. 2. Function of COMP-2 is setting dead-time. At point A is the square wave and at point B is the triangular wave. By putting two input signals (A, B) into COMP-2, output (point C) voltage is held high level during rising period of triangular wave and the switching transistor is kept in the off condition regardless the COMP-1 output level. So the maximum duty cycle of the NJM2352 is 50%.

The COMP-1 makes on-time of switching transistor longer when the output voltage is high and shorter when it is low. Thus function of the COMP-1 is pulse wide modulation. When the AMP's output waveform is D, COMP-1 output is like E, and NOR GATE output becomes high level only when both inputs, C, E, are low, and so the falling period of triangular wave is the range of pulse width control.

■ MINIMUM OPERATING VOLTAGE

Minimum operating voltage is $V^{\dagger} \ge 2.6V$ at 25°C and its temperature coefficient is negative. Be careful when you design. Less than this minimum operating voltage, internal switching transistor becomes on, and the surge-like high current flows into it especially in Step-Up or Inverting application.

■ OSCILLATOR

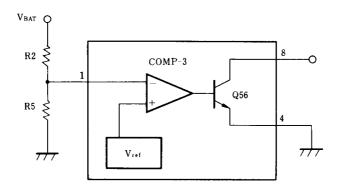

Oscillator frequency is decided by putting a capacitor into PIN 2. The amplitude of both square wave A and triangular wave B is between 1 V_{BE} and $3V_{BE}$.

■ AMPLIFIER

AMP source current it 20 μA max. and so the feedback resistor R₁ to be connected to PIN 6 and PIN 7 are recommended more than $100k\Omega$.

■ SWITCHING TRANSISTOR

When the negative voltage more than 0.5V absolute value based on ground level is applied, the NJM2352 may operate unordinary by reason of parasitic effect in it. And so put SBD in between PIN 3 and ground when you drive directory coil with internal switching transistor.



■ DETECTION CIRCUIT OF INPUT VOLTAGE DROP

When input voltage becomes lower than specified voltage, transistor Q_{56} switches on and indicative device like LED turns on. The specified voltage is decided by internal reference voltage and outer resistors ratio.

$$V_{TH} = V_{REF} (1+R2/R5) + R2 \times 0.5 \mu A$$

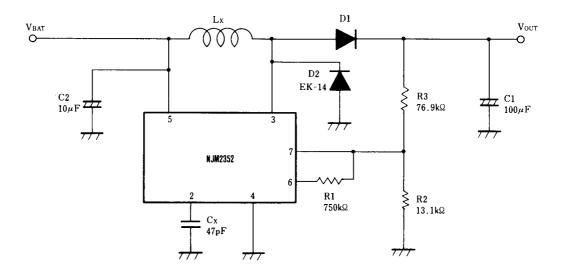
When - input voltage becomes lower than + input voltage, PIN 1 of COMP-3 sinks about 1μ A and thus prevents chattering. Transistor Q56 becomes off condition when PIN 1 voltage is lower than about 0.2V. It is recommendable to put about 1μ F to PIN 1 in actual application to avoid switching noise.

■ EFFICIENCY

Efficiency is shown below.

Set Up =
$$\frac{V_{IN} - V_S}{V_{IN}}$$
 x $\frac{V_{OUT}}{V_{OUT} + V_D - V_S}$

Step Down =
$$\frac{V_{IN} - V_{S} + V_{D}}{V_{IN}} \times \frac{V_{OUT}}{V_{OUT} + V_{D}}$$

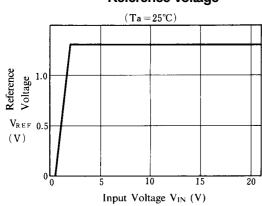

Inverting =
$$\frac{V_{IN} - V_S}{V_{IN}} \times \frac{|V_{OUT}|}{|V_{OUT}| + V_D}$$

 $V_{\mbox{\scriptsize S}}$: Voltage Drop based on switching transistor On-Resistance.

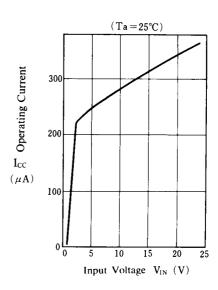
V_D: Diode Forward Voltage Drop.

If V_S and V_D are low, efficiency increase. Also speed of switching transistor and diode, series resistance of L will affect to it. Example is shown on typical characteristic graph.

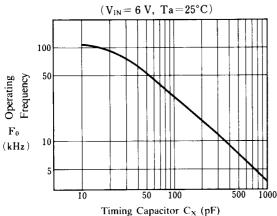
■ TEST CIRCUIT 2 (V_{OUT}: 9V)

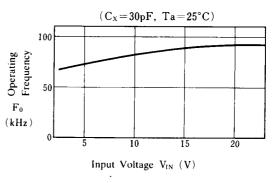


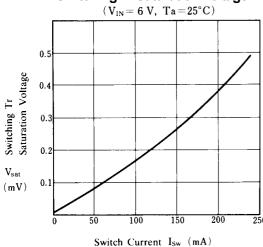
■ PARAMETER

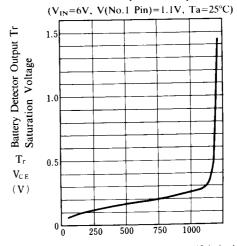

- D1
 - EK-14
 - IS1588
- LX = 470µH
 - L1 : Ingernal Resistance = 0.2Ω
 - L2 : Ingernal Resistance = 2Ω
 - L3 : Ingernal Resistance = 7Ω

■ TYPICAL CHARACTERISTICS

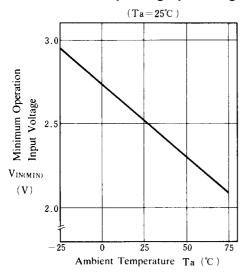

Reference Voltage

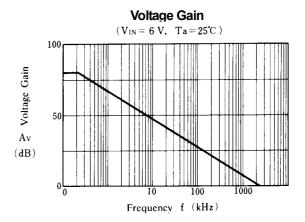

Operating Current


Operating Frequency

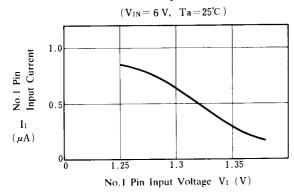

Operating Frequency

Switching Tr Saturation Voltage

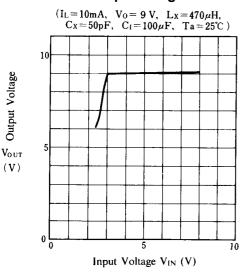

V_{CE} (No. 8 Pin)



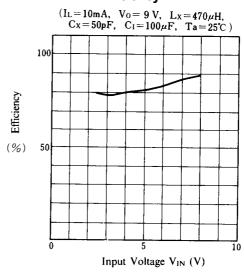
Detector Output Tr Current I_{LBD} (L) (μA)


■ TYPICAL CHARACTERISTICS

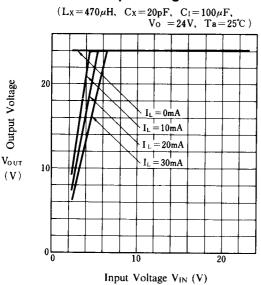
Minimum Operating Input Voltage

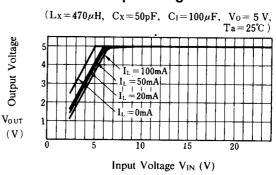


No.1 Pin Input Current

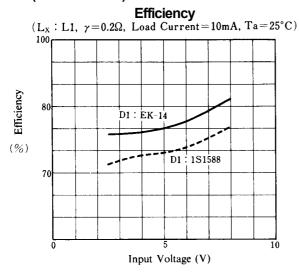


■ TYPICAL CHARACTERISTICS (APPLICATION)

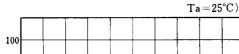

Output Voltage


Efficiency

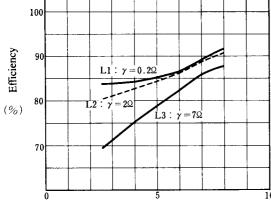
Output Voltage

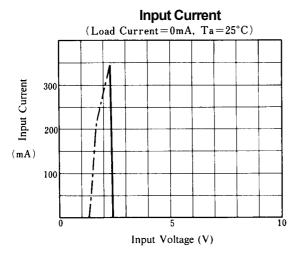


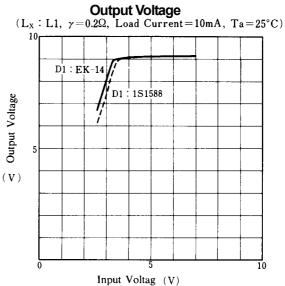
Output Voltage



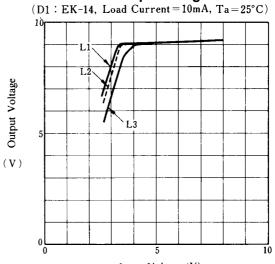
■ TYPICAL CHARACTERISTICS


(Test Circuits 2)

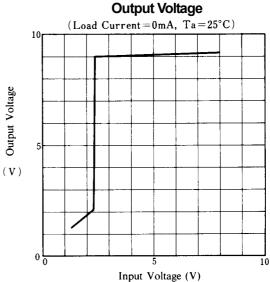

Efficiency



(D1: EK-14, Load Current=10mA,



Input Voltage (V)



Output Voltage

Input Voltage (V)

[CAUTION]
The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.