

QUAD OPERATIONAL AMPLIFIER

■ GENERAL DESCRIPTION

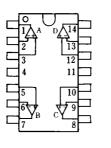
NJM2112 is low operating voltage ($\pm 1.0 \text{V}$ min.) and low saturation output voltage ($\pm 2.0 \text{V}_{\text{P-P}}$ at operating voltage $\pm 2.5 \text{V}$) operational amplifier. It is applicable to HANDY TYPE CD, RADIO CASSETTE CD, and PORTABLE DAT, that are digital audio apparatus which require the 5V single supply operation and high output voltage. The NJM2112 is quad operational amplifier. Each amplifier of the NJM2112 has the same electrical characteristic of the NJM2115.

■ FEATURES

Operating Voltage (±1.0V~±7.0V)
 Low Saturation Output Voltage (±2.0V_{P-P}@V⁺=±2.5V)
 Package Outline DIP14,DMP14,SSOP14

• Bipolar Technology

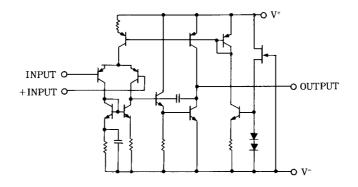
■ PACKAGE OUTLINE


NJM2112D

NJM2112M

NJM2112V

■ PIN CONFIGURATION



NJM2112D NJM2112M NJM2112V PIN FUNCTION
1. A OUTPUT
2. A -INPUT
3. A +INPUT
4. V[†]
5. B +INPUT
6. B -INPUT
7. B OUTPUT
8.C OUTPUT
9. C -INPUT
10.C +INPUT
11. V
12.D +INPUT

13.D -INPUT

14.D OUTPUT

■ EQUIVALENT CIRCUIT (1/4 Shown)

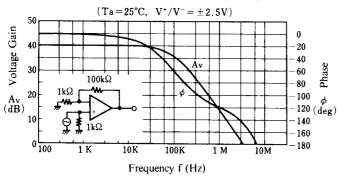
■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

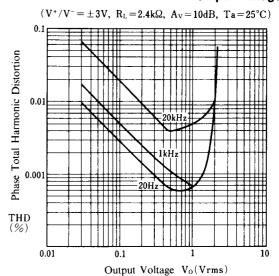
PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V [†] /V	± 7.0	V
Differential Input Voltage	V _{ID}	± 14	V
		(DIP14) 500	
Power Dissipation	P_D	(DMP14) 300	mW
		(SSOP14)300	
Operating Temperature Range	T _{opr}	-40~+85	°C
Storage Temperature Range	T _{stg}	-40~+125	°C

■ ELECTRICAL CHARACTERISTICS

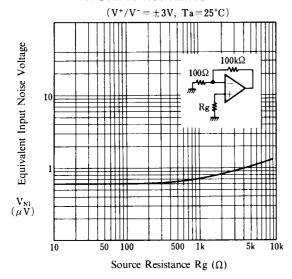
 $(V^{\dagger}N^{-}=\pm 2.5V,Ta=25^{\circ}C)$

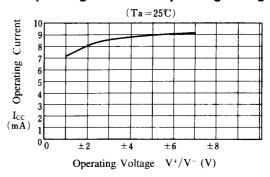

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Input Offset Voltage	V _{IO}	R _S ≤10kΩ	-	1	6	mV
Input Bias Current	I_{B}		-	100	300	nA
Large signal Voltage Gain	A_V	R _L ≥10kΩ	60	80	-	dB
Maximum Output Voltage Swing	V_{OM}	R _L ≥2.5kΩ	±2	± 2.2	-	V
Input Common Mode Voltage Range	V _{ICM}		± 1.5	-	-	V
Common Mode Rejection Ratio	CMR		60	74	-	dB
Supply Voltage Rejection Ratio	SVR		60	80	-	dB
Operating Current	I _{CC}	V _{IN} =0,R _L =∞	-	8	11	mA
Slew Rate	SR	$A_V=1,V_{IN}=\pm 1V$	-	3.2	-	V/µs
Gain Bandwidth Product	GB	f=10kHz	-	9	-	MHz

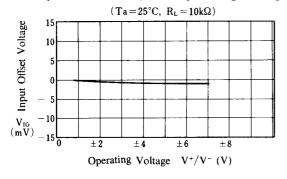
⁽Note1) Applied circuit voltage gain is desired to be operated within the range of 3dB to 30 dB.

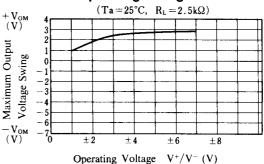

⁽ Note2) Special care being required for input common mode voltage range and the oscillation due to the capacitive load when operating on voltage follower.

■ TYPICAL CHARACTERISTICS

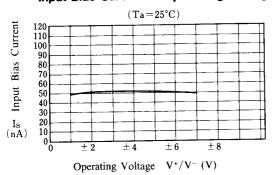

Voltage Gain, Phase vs. Frequency


Total Harmonic Distartion vs. Output Voltage

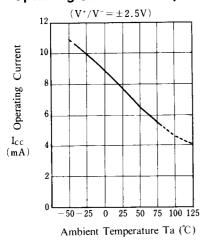

Equivalent Input Noise Voltage vs. Source Resistance


Operating Current vs. Operating Voltage

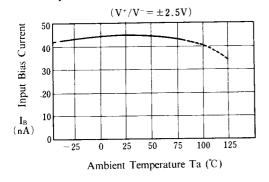
Input Offset Voltage vs. Operating Voltage

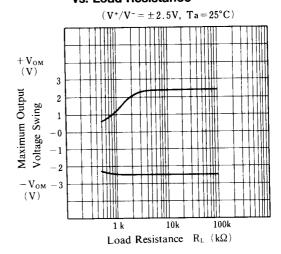


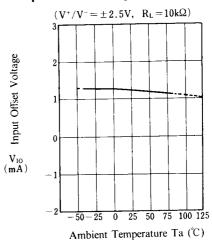
Maximum Output Voltage Swing vs. Operating Voltage

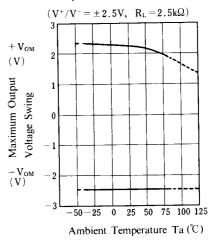


■ TYPICAL CHARACTERISTICS


Input Bias Curent vs. Operating Voltage


Operating Current vs. Temperature


Input Bias Current vs. Temperature


Maximum Output Voltage Swing vs. Load Resistance

Input Offset Voltage vs. Temperature

Maximum Output Voltage Swing vs. Temperature

[CAUTION]

The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.