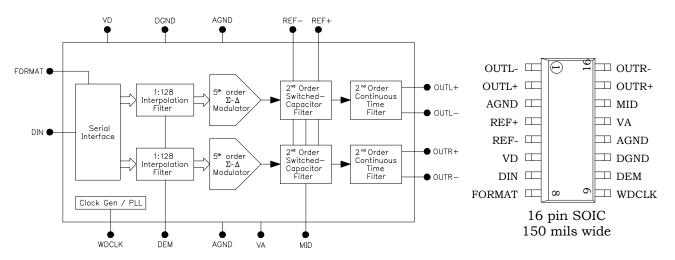


24-Bit Digital-to-Analog Converter

Lead Free - Complies with RoHS Directive

General Description

The AL1201G is a 24-bit sigma-delta stereo digital-to-analog audio converter using Wavefront's ClockEZ™ technology. With dynamic range of 107dB, simplified interface, and low power consumption, AL1201G (and its companion AL1101G best-in-class ADC) is а solution for 44.1kHz and 48kHz operation.


Applications

- Digital Mixing Boards
- Signal Processors
- Digital Effects Boxes
- Digital Recorders
- Computer Sound Boards
- Karaoke Systems
- Car Audio Systems
- CD Audio Systems

Features

- 24-bit conversion
- 107dB dynamic range (A-wt)
- 0.003% THD at fullscale input
- ➤ ClockEZTM circuitry: internal PLL derives all necessary timing signals from one external Fs clock
- \triangleright 128X oversampling, 5th order 1-bit Σ-Δ modulator
- ➤ 2nd order switched capacitor filter and 2nd order continuous-time filter on-chip
- Sample rate: 24kHz to 55kHz
- Selectable deemphasis (15µs/50µs at Fs=44.1kHz
- Serial input selectable: 32/24 bits/frame
- Full scale differential input = $\pm 4V$
- 5V operation
- Lead Free Complies with RoHS **Directive**

Architecture Block diagram and Package

Wavefront Semiconductor ∴ 200 Scenic View Drive ∴ Cumberland, RI 02864 ∴ U.S.A. Tel: +1 401 658-3670 :: Fax: +1 401 658-3680 :: Email: info@wavefrontsemi.com On the web at www.wavefrontsemi.com

SIOCKEZ TMDAG

Table of Contents

General Description	I
Features	1
Applications	1
Architecture Block Diagram and Package	1
Table of Contents	
Pin Descriptions	
Electrical Characteristics	
Recommended Operating Conditions	3
Analog Characteristics	
Combined Digital/Analog Filter Characteristics	
Digital Inputs	
Architecture Details	4
Differential Analog Outputs	4
Single Ended Output Conditioning Circuit	
Unbalanced Output Conditioning Circuit	4
Serial Input Interface	
Serial Input Interface Formats	5
Serial Input Interface Timing	5
Clock Generator and PLL	6
Reference and MID	6
Power Supplies and Ground	
Suggested Connections	
Package Dimensions	
Notice and Contact Information	

Pin Descriptions

Pin#	Name	Pin Type	Description	
1	OUTL-	Out	Negative analog output, left channel.	
2	OUTL+	Out	Positive analog output, left channel.	
3	AGND	Ground	Analog ground.	
4	REF+	Power	Positive reference, connect to V_{DD} thru 220Ω resistor, connect $0.1\mu F$ bypass capacitor to REF	
5	REF-	Ground	Negative reference, connect to GND	
6	VD	Power	Digital supply, connect 0.1µF bypass capacitor to GND.	
7	DIN	In	Serial data input.	
8	FORMAT	In	Format select: 0=32 bits/frame, 1=24bits/frame.	
9	WDCLK	In	Sample frequency wordclock, 24kHz <fs<55khz.< td=""></fs<55khz.<>	
10	DEM	In	Deemphasis select: 0: no deemphasis, 1=deemphasis.	
11	DGND	Ground	Digital ground.	
12	AGND	Ground	Analog ground.	
13	VA	Power	Analog supply, connect 0.1µF bypass capacitor to GND.	
14	MID	I/O	Mid reference, connect 0.1μF bypass capacitor to GND.	
15	OUTR+	Out	Positive analog output, right channel.	
16	OUTR-	Out	Negative analog output, right channel.	

Parameter	Description/Condition	Min	Тур	Max	Units
Recommended Oper	ating Conditions				
VA	Analog supply voltage	4.5	5.0	5.5	V
VD	Digital supply voltage	4.5	5.0	5.5	V
AGND	Analog ground	-	0.0	-	V
DGND	Digital ground	-	0.0	-	V
Fs	Sample rate	24	48	50	kHz
Temp	Temperature	0	25	70	°C
R_{LOAD}	Differential load resistance	12k			Ω

Analog Characteristics 1

Dynamic Range	Output = -60dBFS (A-weighted)	107		dB
J 11 20 1111280	Output = 0dBFS	-90		
THD+N	-20dBFS	-84		dB
	-60dBFS	-44		
Crosstalk	Output = 0dBFS	-118		dB
	[OUT+]-[OUT-] fullscale ²	±4.0		V
Output Voltage	Interchannel match	0.05		dΒ
Output Voltage	Differential DC offset	1		mV
	Common mode DC bias	2.5		V
Max Output Current		±0.4		mA
Output Impedance	Differential	3		Ω
REF Current	I _{REF} ³	190		μΑ
Power Consumption		170		mW
Gain Error			±0.69	%
PSRR	Power supply rejection ratio	70		dB

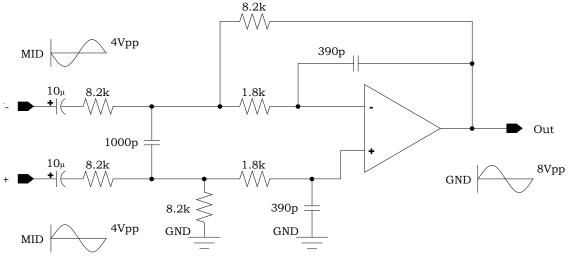
Combined Digital/Anaglog Filter Characteristics 4

Combined Digitar, in	agiog i iitoi oilaiaotoiiotioo				
Passband	±0.1dB bandwidth ⁵	0		21.77k	Hz
	Ripple			±0.007	dΒ
Stanhand	Frequency ⁵	26.23k			Hz
Stopband	Attenuation	-70			dΒ
Group Delay			28.5		1/Fs
Deemphasis Filter	'Pole' time constant (Fs = 44.1kHz)		50		μs
	'Zero' time constant (Fs = 44.1kHz)		15		μs

Digital Inputs (WDCLK, DIN, DEM, FORMAT)

$V_{ m IH}$	Logical "1" input voltage	0.55VD			V
$V_{ m IL}$	Logical "0" input voltage			0.1VD	V
$I_{ m IN}$	Input leakage current			1	μΑ
C _{IN}	Input capacitance		5		рF

- Note 1: Temp = 25°C, VA = VD = REF+ = 5V, Fs = 48kHz, F_{INPUT} = 24-bit @ 1kHz, Bandwidth = 20Hz-20kHz.
- Note 2: Full scale output scales linearly with REF potential ([REF+]-[REF-]).
- Note 3: REF current scales linearly with Fs.
- Note 4: Temp = 25°C, VA = VD = REF+ = 5V, Fs = 48kHz.
- Note 5: Passband, stopband, and deemphasis frequencies scale with Fs.

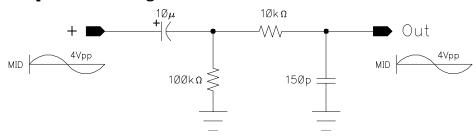

Architecture Details

Differential Analog Outputs

The AL1201G outputs are self-biased to MID potential. Maximum output signal level is $\pm 4V$ differential, or $\pm 4.5V$ at the pin.

The outputs have been internally filtered to reduce out-of-band noise, and further filtering is suggested where this is considered critical. The differential-to-single-ended filter shown is a two-pole 48kHz lowpass filter whose frequency response is flat from DC to $20kHz \pm 0.03dB$. Its group delay deviation from flat is $1.3\mu s$ at 20kHz.

Single-Ended Output Conditioning Circuit



*Note: Film or high quality ceramic capacitor suggested.

If decreasing component count is an important factor, and a decrease in performance specifications is acceptable, the AL1201G outputs may be taken unbalanced with a simple passive component conditioning circuit. The highpass filter has fc = 0.16Hz, the lowpass filter has

fc = 106kHz.

Unbalanced Output Conditioning Circuit

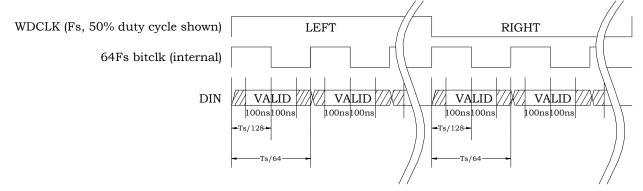
*Note: Film or high quality ceramic capacitor suggested.

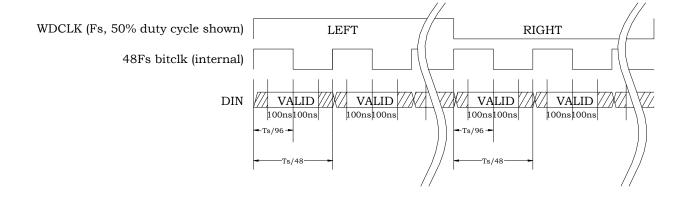
The AL1201G can properly receive input logical "1" voltages of 0.55VD. This means the AL1201G can interface directly with logic signals supplied from 3.3V systems. No special interface circuitry is required.

Serial Input Interface

The AL1201G receives its two's complement serial input data in a standard MSB-first format. Two bitrates are provided: The 32-bits-per-frame rate (FORMAT low) is suitable for use in systems where 256*Fs master clocks are present. The 24-bits-per-frame rate (FORMAT high) is convenient when interfacing with circuits where 384*Fs master clocks are present.

The input sample period is defined between rising edges of wordclock (WDCLK) input. Nominally, this is a 50% duty-cycle clock at frequency Fs, but it can be a pulse with


Left channel data input should start when WDCLK rises, and right channel data input should start Ts/2 seconds later (on falling edge of WDCLK if WDCLK has a 50% duty cycle).


The serial bits are clocked in on the rising edge of an internally generated bitclock (whose rising edge is aligned with rising edge of WDCLK) that runs at 64*Fs when FORMAT is low (32-bits-perframe), or 48*Fs when FORMAT is high (24-bits-per-frame). The data should be valid ±100ns from the center of these bit-frames.

Serial Input Interface Formats

Serial Input Interface Timing

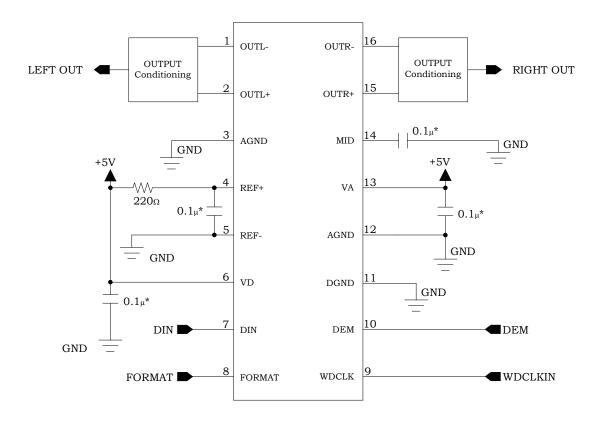
Clock Generator and PLL

The AL1201G contains an internal PLL that locks to the rising edge of WDCLK and produces all necessary high frequency clocks and timing signals to operate the device. This high quality PLL will reject any high-frequency jitter on the incoming wordclock (jitter rejection corner at approximately 4kHz).

The PLL allows a simplified user interface and eliminates the need of running high frequency clocks to the part on PCB traces. This reduces unwanted RF noise and coupling problems that can occur when such clock signals are required on input pins for a device.

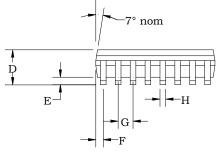
Reference and MID

The differential potential between the REF+ and REF- pins (connected to +5V and GND respectively) determines the amount of charge that is added to or removed from the switched capacitor filter input for each Σ - Δ modulator output (128*Fs). It is very important that REF+ is well bypassed to REF- (0.1μF ceramic capacitor as close as possible to the pins) to remove the unwanted effects of high frequency noise.

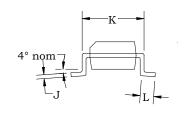

The MID potential is developed on-chip (VA/2 Volts) and is used to bias the internal amplifiers in the switched capacitor and continuous time filters. It requires a 0.1µF bypass capacitor to GND at the pin. No load current should be taken from the MID pin.

Power Supplies and Ground

A single low-impedance +5V supply is all that is required to achieve the specified performance. A +5V supply plane on the PCB is recommended if possible. VA and VD may be directly connected to +5V, and REF+ should be isolated with a 220Ω resistor to +5V.


A single low impedance ground plane can be used for all GND connections, simplifying PCB layout. Each supply pin should be bypassed to GND with a 0.1 µF ceramic capacitor positioned as close to the pins as possible.

Suggested Connections


Package Dimensions

Dimensions (Typical)			
	Inches	Millimeters	
Α	0.389"	9.88	
В	0.154"	3.91	
С	0.236"	5.99	
D	0.100"	2.50	
E	0.008"	0.20	
F	0.025"	0.64	
G	0.050"	1.27	
Н	0.017"	0.42	
J	0.011"	0.27	
K	0.170"	4.32	
L	0.033"	0.83	

Note: Dimension "A" does not include mold flash, protrusions, or gate burrs.

NOTICE

Wavefront Semiconductor reserves the right to make changes to their products or to discontinue any product or service without notice. All products are sold subject to terms and conditions of sale supplied at the time of order acknowledgement. Wavefront Semiconductor assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Information contained herein is only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked, no responsibility is assumed for inaccuracies.

Wavefront Semiconductor products are not designed for use in applications which involve potential risks of death, personal injury, or severe property or environmental damage or life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness.

All trademarks and registered trademarks are property of their respective owners.

Contact Information:

Wavefront Semiconductor 200 Scenic View Drive Cumberland, RI 02864 U.S.A. Tel: +1 401 658-3670 Fax: +1 401 658-3680

On the web at www.wavefrontsemi.com Email: info@wavefrontsemi.com

Copyright © 2005 Wavefront Semiconductor Application note revised September, 2005

Reproduction, in part or in whole, without the prior written consent of Wavefront Semiconductor is prohibited.

