Preferred Device

SWITCHMODESchottky Power Rectifier

Surface Mount Power Package

This series of Power Rectifiers employs the Schottky Barrier principle in a large metal-to-silicon power diode. State-of-the-art geometry features epitaxial construction with oxide passivation and metal overlay contact. Ideally suited for use in low voltage, high frequency switching power supplies, free wheeling diodes, and polarity protection diodes.

Features

- · Guardring for Stress Protection
- Low Forward Voltage
- 175°C Operating Junction Temperature
- Epoxy Meets UL 94 V-0 @ 0.125 in
- Short Heat Sink Tab Manufactured Not Sheared!
- AEC-Q101 Qualified and PPAP Capable
- SBRB and SBRD8 Prefixes for Automotive and Other Applications Requiring Unique Site and Control Change Requirements
- All Packages are Pb-Free*

Mechanical Characteristics:

- Case: Epoxy, Molded, Epoxy Meets UL 94 V-0
- Weight: 1.7 grams for D²PAK (approximately) 0.4 grams for DPAK (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Device Meets MSL1 Requirements
- ESD Ratings:
 - ♦ Machine Model = C (> 400 V)
 - ♦ Human Body Model = 3B (> 8000 V)

ON Semiconductor®

http://onsemi.com

SCHOTTKY BARRIER RECTIFIER 10 AMPERES, 45 VOLTS

MARKING DIAGRAM

A = Assembly Location Y = Year WW = Work Week MBRB1045 = Device Code

MBRB1045 = Device Code
G = Pb-Free Package
AKA = Diode Polarity

MARKING DIAGRAM

Y = Year

WW = Work Week

B1045 = Device Code

G = Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

Preferred devices are recommended choices for future use and best overall value.

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	45	V
Average Rectified Forward Current (Rated V _R) T _C = 135°C	I _{F(AV)}	10	Α
Peak Repetitive Forward Current (Rated V _R , Square Wave, 20 kHz) T _C = 135°C	I _{FRM}	20	А
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	I _{FSM}	150 (MBRB/SBRB) 70 (MBRD/SBRD)	А
Operating Junction and Storage Temperature Range (Note 1)	T _J , T _{stg}	-65 to +175	°C
Voltage Rate of Change (Rated V _R)	dv/dt	10000	V/μs

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance, (MBRB1045G)			°C/W
Junction-to-Case (Note 2) Junction-to-Ambient (Note 2)	$R_{ hetaJC} \ R_{ hetaJA}$	1.0 50	
(MBRD1045G) Junction-to-Case (Note 2) Junction-to-Ambient (Note 2)	$R_{ hetaJC} \ R_{ hetaJA}$	2.43 68	

^{2.} When mounted using minimum recommended pad size on FR-4 board.

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Maximum Instantaneous Forward Voltage (Note 3) ($I_F = 10 \text{ Amps}, T_J = 125^{\circ}\text{C}$) ($I_F = 20 \text{ Amps}, T_J = 125^{\circ}\text{C}$) ($I_F = 20 \text{ Amps}, T_J = 25^{\circ}\text{C}$)	V _F	0.57 0.72 0.84	V
Maximum Instantaneous Reverse Current (Note 3) (Rated dc Voltage, T_J = 125°C) (Rated dc Voltage, T_J = 25°C)	I _R	15 0.1	mA

^{3.} Pulse Test: Pulse Width = 300 μs, Duty Cycle ≤ 2.0%

ORDERING INFORMATION

Device	Package	Shipping [†]	
MBRB1045G	D ² PAK (Pb-Free)	50 Units / Rail	
SBRB1045G	D ² PAK (Pb-Free)	50 Units / Rail	
MBRB1045T4G	D ² PAK (Pb-Free)	800 Units / Tape & Reel	
SBRB1045T4G	D ² PAK (Pb-Free)	800 Units / Tape & Reel	
MBRD1045G	DPAK (Pb-Free)	50 Units / Rail	
MBRD1045T4G	DPAK (Pb-Free)	2,500 Units / Tape & Reel	
SBRD81045T4G	DPAK (Pb-Free)	2,500 Units / Tape & Reel	

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{1.} The heat generated must be less than the thermal conductivity from Junction-to-Ambient: $dP_D/dT_J < 1/R_{\theta JA}$.

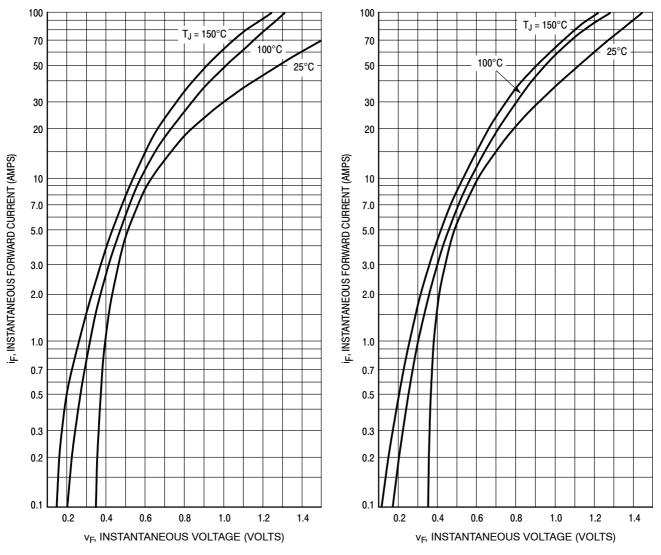


Figure 1. Maximum Forward Voltage

 $T_J = 150$ °C

125°C

100°C

25°C

20

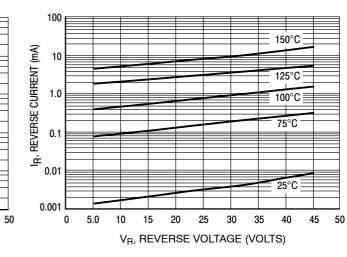
100

10

1.0

0.1

0.01


0.001

5.0

10

15

REVERSE CURRENT (mA)

V_R, REVERSE VOLTAGE (VOLTS)

25

30

40

45

Figure 3. Maximum Reverse Current Figure 4. Typical Reverse Current

Figure 2. Typical Forward Voltage

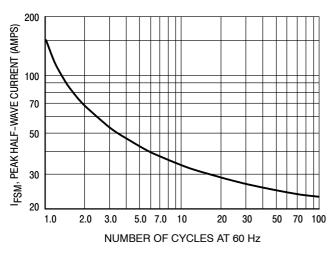


Figure 8. Maximum Surge Capability

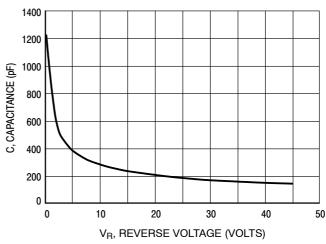


Figure 5. Typical Capacitance

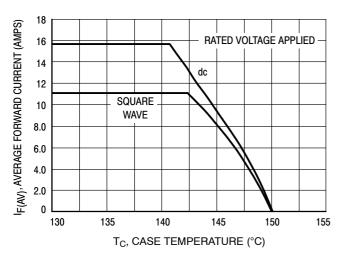


Figure 6. Current Derating, Case, $R_{\theta JC} = 1.0 \, ^{\circ}\text{C/W}$

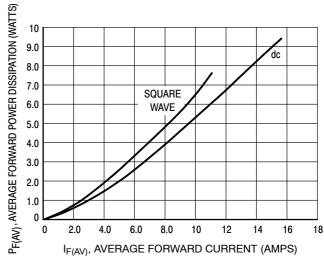
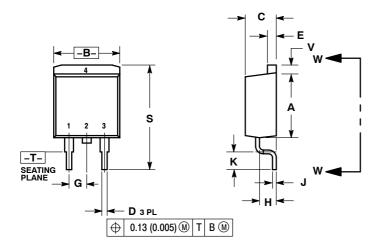
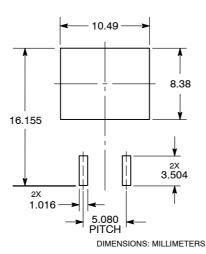



Figure 7. Forward Power Dissipation

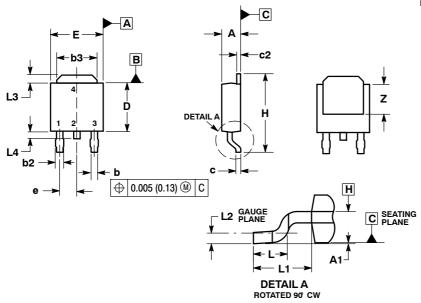
PACKAGE DIMENSIONS


D²PAK 3 CASE 418B-04 ISSUE K

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. 418B-01 THRU 418B-03 OBSOLETE, NEW STANDARD 418B-04.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	0.340	0.380	8.64	9.65
В	0.380	0.405	9.65	10.29
С	0.160	0.190	4.06	4.83
D	0.020	0.035	0.51	0.89
E	0.045	0.055	1.14	1.40
F	0.310	0.350	7.87	8.89
G	0.100 BSC		2.54 BSC	
Н	0.080	0.110	2.03	2.79
J	0.018	0.025	0.46	0.64
K	0.090	0.110	2.29	2.79
L	0.052	0.072	1.32	1.83
М	0.280	0.320	7.11	8.13
N	0.197	7 REF 5.00 REF		REF
P	0.079 REF		2.00 REF	
R	0.039 REF		0.99 REF	
S	0.575	0.625	14.60	15.88
V	0.045	0.055	1.14	1.40

SOLDERING FOOTPRINT*

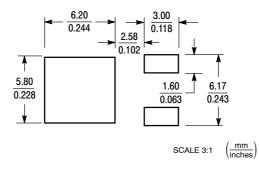


*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

DPAK (SINGLE GAUGE)

CASE 369C-01 ISSUE D



NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M. 1994.
- 2. CONTROLLING DIMENSION: INCHES.
- THERMAL PAD CONTOUR OPTIONAL WITHIN DI-MENSIONS b3, L3 and Z.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.
- 5. DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- 6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.086	0.094	2.18	2.38
A1	0.000	0.005	0.00	0.13
b	0.025	0.035	0.63	0.89
b2	0.030	0.045	0.76	1.14
b3	0.180	0.215	4.57	5.46
С	0.018	0.024	0.46	0.61
c2	0.018	0.024	0.46	0.61
D	0.235	0.245	5.97	6.22
E	0.250	0.265	6.35	6.73
е	0.090 BSC		2.29 BSC	
Н	0.370	0.410	9.40	10.41
L	0.055	0.070	1.40	1.78
L1	0.108 REF		2.74 REF	
L2	0.020	0.020 BSC		BSC
L3	0.035	0.050	0.89	1.27
L4		0.040		1.01
Z	0.155		3.93	

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and was are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada

Fax: 303-675-2175 or 800-344-3860 1011 Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative