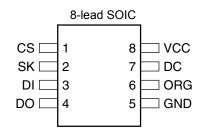
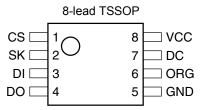
1. Features


- · Medium-voltage and Standard-voltage Operation
 - $-2.7 (V_{CC} = 2.7V \text{ to } 5.5V)$
- Automotive Temperature Range –40°C to +125°C
- User Selectable Internal Organization
 - 16K: 2048 x 8 or 1024 x 16
- · 3-wire Serial Interface
- · Sequential Read Operation
- Schmitt Trigger, Filtered Inputs for Noise Suppression
- · 2 MHz Clock Rate (5V) Compatibility
- Self-timed Write Cycle (10 ms max)
- High Reliability
 - Endurance: 1 Million Write Cycles
 - Data Retention: 100 Years
- · Lead-Free/Halogen-Free Devices Available
- 8-lead JEDEC SOIC and 8-lead TSSOP Packages


2. Description

The AT93C86A provides 16384 bits of serial electrically erasable programmable read only memory (EEPROM), organized as 1024 words of 16 bits each when the ORG pin is connected to $V_{\rm CC}$ and 2048 words of 8 bits each when it is tied to ground. The device is optimized for use in many automotive applications where low-power and low-voltage operations are essential. The AT93C86A is available in space saving 8-lead JEDEC SOIC and 8-lead TSSOP packages.

Table 2-1.Pin Configuration

Pin Name	Function
CS	Chip Select
SK	Serial Data Clock
DI	Serial Data Input
DO	Serial Data Output
GND	Ground
VCC	Power Supply
ORG	Internal Organization
DC	Don't Connect

The AT93C86A is enabled through the Chip Select pin (CS), and accessed via a three-wire serial interface consisting of Data Input (DI), Data Output (DO), and Shift Clock (SK). Upon receiving a Read instruction at DI, the address is decoded and the data is clocked out serially on the data output pin DO. The write cycle is completely self-timed and no separate erase cycle is required before Write. The write cycle is only enabled when the part is in the Erase/Write Enable state. When CS is brought "high" following the initiation of a write cycle, the DO pin outputs the Ready/Busy status of the part. The AT93C86A is available in a 2.7V to 5.5V version.

Three-wire Automotive Temperature Serial EEPROM

16K (2048 x 8 or 1024 x 16)

AT93C86A

Rev. 5096E-SEEPR-1/08

Absolute Maximum Ratings*

Operating Temperature	–55°C to +125°C
Storage Temperature	65°C to +150°C
Voltage on any Pin with Respect to Ground	1.0V to +7.0V
Maximum Operating Voltage	6.25V
DC Output Current	5.0 mA

-: 64 DL LD:

*NOTICE:

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

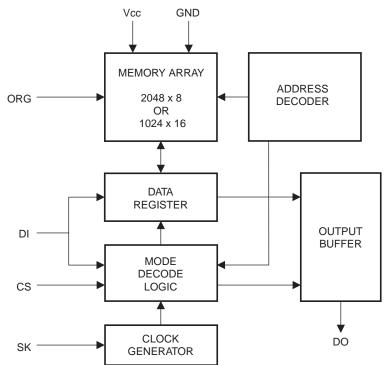


Figure 2-1. Block Diagram

Note: When the ORG pin is connected to Vcc, the x 16 organization is selected. When it is connected to ground, the x 8 organization is selected. If the ORG pin is left unconnected and the application does not load the input beyond the capability of the internal 1 Meg ohm pullup, then the x 16 organization is selected.

Table 2-2. Pin Capacitance⁽¹⁾ Applicable over recommended operating range from $T_A = 25^{\circ}\text{C}$, f = 1.0 MHz, $V_{CC} = +5.0 \text{V}$ (unless otherwise noted)

Symbol	Test Conditions	Max	Units	Conditions
C _{OUT}	Output Capacitance (DO)	5	pF	V _{OUT} = 0V
C _{IN}	Input Capacitance (CS, SK, DI)	5	pF	V _{IN} = 0V

Note: 1. This parameter is characterized and is not 100% tested.

 Table 2-3.
 DC Characteristics

Applicable over recommended operating range from: $T_A = -40$ °C to +125°C, $V_{CC} = +2.7V$ to +5.5V (unless otherwise noted)

Symbol	Parameter	Test Condition		Min	Тур	Max	Unit
V _{CC1}	Supply Voltage			2.7		5.5	V
V _{CC2}	Supply Voltage			4.5		5.5	V
	Committee Comment	\/ - F 0\/	READ at 1.0 MHz		0.5	2.0	mA
I _{CC}	Supply Current	V _{CC} = 5.0V	WRITE at 1.0 MHz		0.5	2.0	mA
I _{SB1}	Standby Current	V _{CC} = 2.7V	CS = 0V		6.0	10.0	μΑ
I _{SB2}	Standby Current	V _{CC} = 5.0V	CS = 0V		10.0	15.0	μΑ
I _{IL}	Input Leakage	V _{IN} = 0V to V _{CC}			0.1	3.0	μΑ
I _{OL}	Output Leakage	V _{IN} = 0V to V _{CC}			0.1	3.0	μΑ
V _{IL1} ⁽¹⁾	Input Low Voltage	0.7)/ ()/ (5.5)/		0.6		0.8	V
V _{IH1} ⁽¹⁾	Input High Voltage	$2.7V \le V_{CC} \le 5.5V$		2.0		V _{CC} + 1	V
V _{OL1}	Output Low Voltage	0.7)/ ()/ (5.5)/	I _{OL} = 2.1 mA			0.4	V
V _{OH1}	Output High Voltage	$2.7V \le V_{CC} \le 5.5V$	I _{OH} = -0.4 mA	2.4			V

Note: 1. V_{IL} min and V_{IH} max are reference only and are not tested.

Table 2-4. AC Characteristics

Applicable over recommended operating range from T_A = -40°C to +125°C, V_{CC} = As Specified, CL = 1 TTL Gate and 100 pF (unless otherwise noted)

Symbol	Parameter	Test Condition		Min	Тур	Max	Units
f _{SK}	SK Clock Frequency	$4.5V \le V_{CC} \le 5.5V$ $2.7V \le V_{CC} \le 5.5V$		0		2 1	MHz
t _{SKH}	SK High Time	$\begin{array}{c} 4.5 \text{V} \leq \text{V}_{\text{CC}} \leq 5.5 \text{V} \\ 2.7 \text{V} \leq \text{V}_{\text{CC}} \leq 5.5 \text{V} \end{array}$		250 250			ns
t _{SKL}	SK Low Time	$4.5V \le V_{CC} \le 5.5V$ $2.7V \le V_{CC} \le 5.5V$		250 250			ns
t _{cs}	Minimum CS Low Time	$\begin{array}{c} 4.5 \text{V} \leq \text{V}_{\text{CC}} \leq 5.5 \text{V} \\ 2.7 \text{V} \leq \text{V}_{\text{CC}} \leq 5.5 \text{V} \end{array}$		250 250			ns
t _{css}	CS Setup Time	Relative to SK	$\begin{array}{l} 4.5V \leq V_{CC} \leq 5.5V \\ 2.7V \leq V_{CC} \leq 5.5V \end{array}$	50 50			ns
t _{DIS}	DI Setup Time	Relative to SK	$\begin{array}{l} 4.5V \leq V_{CC} \leq 5.5V \\ 2.7V \leq V_{CC} \leq 5.5V \end{array}$	100 100			ns
t _{CSH}	CS Hold Time	Relative to SK		0			ns
t _{DIH}	DI Hold Time	Relative to SK	$4.5V \le V_{CC} \le 5.5V$ $2.7V \le V_{CC} \le 5.5V$	100 100			ns
t _{PD1}	Output Delay to '1'	AC Test	$4.5V \le V_{CC} \le 5.5V$ $2.7V \le V_{CC} \le 5.5V$			250 500	ns
t _{PD0}	Output Delay to '0'	AC Test	$4.5V \le V_{CC} \le 5.5V$ $2.7V \le V_{CC} \le 5.5V$			250 500	ns

Table 2-4. AC Characteristics (Continued)

Applicable over recommended operating range from T_A = -40°C to +125°C, V_{CC} = As Specified, CL = 1 TTL Gate and 100 pF (unless otherwise noted)

Symbol	Parameter	Test Condition		Min	Тур	Max	Units
t _{SV}	CS to Status Valid	AC Test	$4.5V \le V_{CC} \le 5.5V$ $2.7V \le V_{CC} \le 5.5V$			250 250	ns
t _{DF}	CS to DO in High Impedance	AC Test CS = V _{IL}	$4.5V \le V_{CC} \le 5.5V$ $2.7V \le V_{CC} \le 5.5V$			100 150	ns
t _{WP}	Write Cycle Time		$2.7V \le V_{CC} \le 5.5V$	0.1	4	10	ms
Endurance ⁽¹⁾	5.0V, 25°C			1M			Write Cycles

Note: 1. This parameter is characterized and is not 100% tested.

Table 2-5. Instruction Set for the AT93C86A

			Addr	ess	Da	ata	
Instruction	SB	Op Code	x 8	x 16	x 8 x 16		Comments
READ	1	10	A ₁₀ - A ₀	$A_9 - A_0$			Reads data stored in memory, at specified address.
EWEN	1	00	11XXXXXXXXX	11XXXXXXXX			Write enable must precede all programming modes.
ERASE	1	11	A ₁₀ - A ₀	$A_9 - A_0$			Erases memory location $A_n - A_0$.
WRITE	1	01	$A_{10} - A_0$	$A_9 - A_0$	$D_7 - D_0$	D ₁₅ – D ₀	Writes memory location $A_n - A_0$.
ERAL	1	00	10XXXXXXXXX	10XXXXXXXX			Erases all memory locations. Valid only at $V_{\rm CC}$ = 4.5V to 5.5V.
WRAL	1	00	01XXXXXXXXX	01XXXXXXXX	$D_7 - D_0$	D ₁₅ - D ₀	Writes all memory locations. Valid when V_{CC} = 4.5V to 5.5V and Disable Register cleared.
EWDS	1	00	00XXXXXXXX	00XXXXXXXX			Disables all programming instructions.

3. Functional Description

The AT93C86A is accessed via a simple and versatile 3-wire serial communication interface. Device operation is controlled by seven instructions issued by the host processor. *A valid instruction starts with a rising edge of CS* and consists of a Start Bit (logic "1") followed by the appropriate Op Code and the desired memory address location.

READ (READ): The Read (READ) instruction contains the address code for the memory location to be read. After the instruction and address are decoded, data from the selected memory location is available at the serial output pin DO. Output data changes are synchronized with the rising edges of serial clock SK. It should be noted that a dummy bit (logic "0") precedes the 8- or 16-bit data output string. The AT93C86A supports sequential read operations. The device will automatically increment the internal address pointer and clock out the next memory location as long as CS is held high. In this case, the dummy bit (logic "0") will not be clocked out between memory locations, thus allowing for a continuous stream of data to be read.

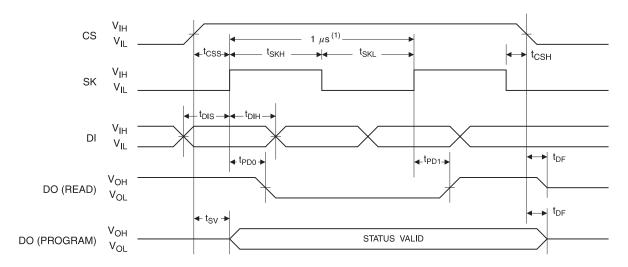
ERASE/WRITE (EWEN): To assure data integrity, the part automatically goes into the Erase/Write Disable (EWDS) state when power is first applied. An Erase/Write Enable (EWEN) instruction must be executed first before any programming instructions can be carried out. Please note that once in the EWEN state, programming remains enabled until an EWDS instruction is executed or V_{CC} power is removed from the part.

ERASE (ERASE): The Erase (ERASE) instruction programs all bits in the specified memory location to the logical "1" state. The self-timed erase cycle starts once the Erase instruction and address are decoded. The DO pin outputs the Ready/Busy status of the part if CS is brought high after being kept low for a minimum of 250 ns (t_{CS}). A logic "1" at pin DO indicates that the selected memory location has been erased, and the part is ready for another instruction.

WRITE (WRITE): The Write (WRITE) instruction contains the 8 or 16 bits of data to be written into the specified memory location. The self-timed programming cycle t_{WP} starts after the last bit of data is received at serial data input pin DI. The DO pin outputs the Ready/Busy status of the part if CS is brought high after being kept low for a minimum of 250 ns (t_{CS}). A logic "0" at DO indicates that programming is still in progress. A logic "1" indicates that the memory location at the specified address has been written with the data pattern contained in the instruction and the part is ready for further instructions. A Ready/Busy status cannot be obtained if the CS is brought high after the end of the self-timed programming cycle t_{WP} .

ERASE ALL (ERAL): The Erase All (ERAL) instruction programs every bit in the memory array to the logic "1" state and is primarily used for testing purposes. The DO pin outputs the Ready/Busy status of the part if CS is brought high after being kept low for a minimum of 250 ns (t_{CS}). The Eral instruction is valid only at $V_{CC} = 5.0V \pm 10\%$.

WRITE ALL (WRAL): The Write All (WRAL) instruction programs all memory locations with the data patterns specified in the instruction. The DO pin outputs the Ready/Busy status of the part if CS is brought high after being kept low for a minimum of 250 ns (t_{CS}). The Wral instruction is valid only at V_{CC} = 5.0V ± 10%.


ERASE/WRITE DISABLE (EWDS): To protect against accidental data disturbance, the Erase/Write Disable (EWDS) instruction disables all programming modes and should be executed after all programming operations. The operation of the Read instruction is independent of both the Ewen and Ewds instructions and can be executed at any time.

4. Timing Diagrams

Figure 4-1. Synchronous Data Timing

Note: 1. This is the minimum SK period.

 Table 4-1.
 Organization Key for Timing Diagrams

	AT93C86A (16K)				
I/O	x 8	x 16			
A _N	A ₁₀	A ₉			
D _N	D ₇	D ₁₅			

Figure 4-2. READ Timing



Figure 4-3. EWEN Timing

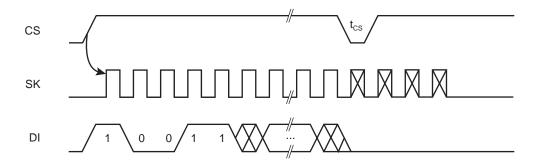


Figure 4-4. EWDS Timing

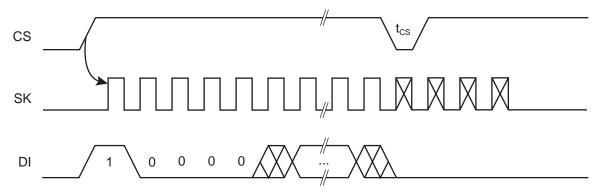
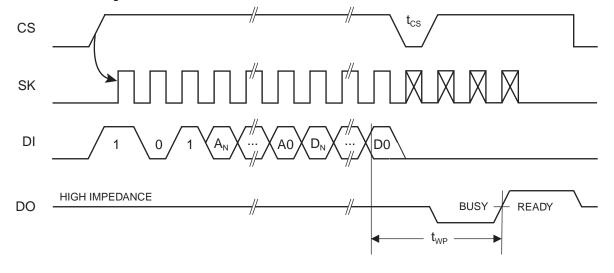
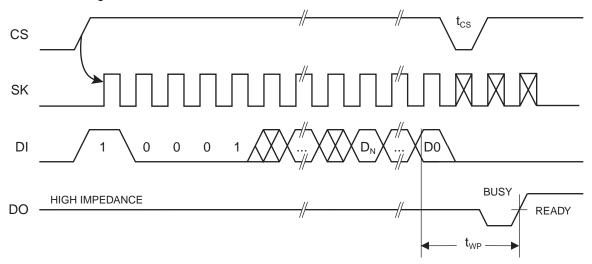
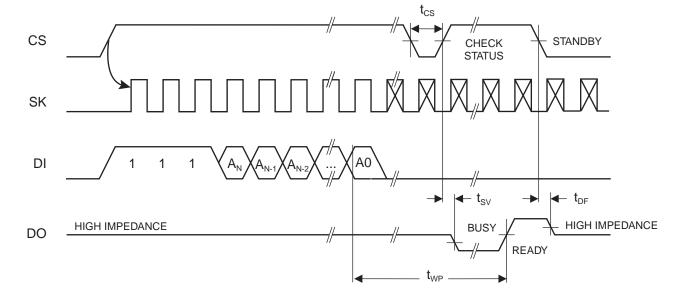
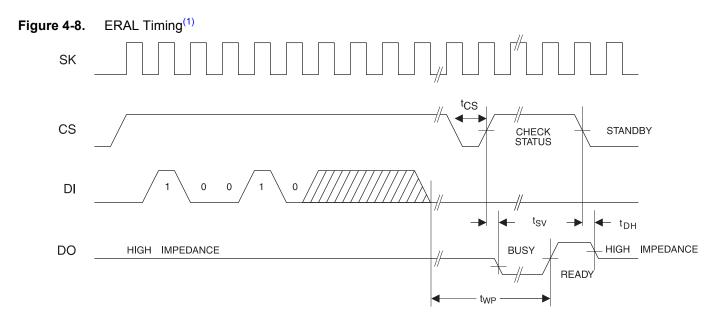


Figure 4-5. WRITE Timing

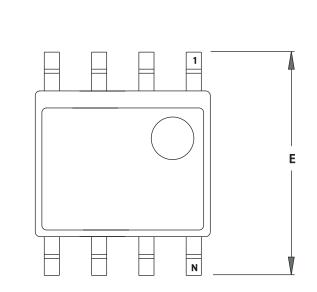



Figure 4-6. WRAL Timing⁽¹⁾

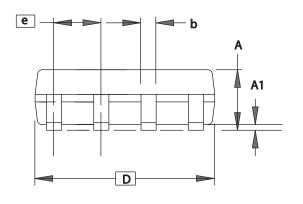
Note: 1. Valid only at V_{CC} = 4.5V to 5.5V.

Figure 4-7. ERASE Timing

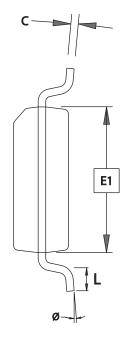
Note: 1. Valid only at $V_{CC} = 4.5V$ to 5.5V.


5. AT93C86A Ordering Information

Ordering Code	Package	Operation Range
AT93C86A-10SQ-2.7 AT93C86A-10TQ-2.7	8S1 8A2	Lead-free/Halogen-free Automotive Temperature (-40°C to 125°C)


	Package Type				
8S1	8-lead, 0.150" Wide, Plastic Gull Wing Small Outline (JEDEC SOIC)				
8A2	8-lead, 0.170" Wide, Thin Shrink Small Outline Package (TSSOP)				
	Options				
-2.7	Low Voltage (2.7V to 5.5V)				

6. Packaging Information


6.1 8S1 - JEDEC SOIC

TOP VIEW

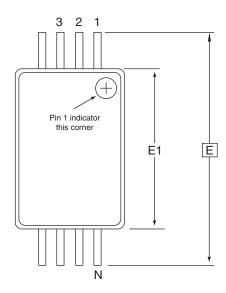
SIDE VIEW

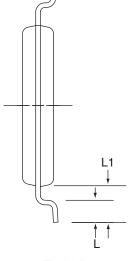
END VIEW

COMMON DIMENSIONS (Unit of Measure = mm)

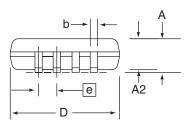
	`			
SYMBOL	MIN	NOM	MAX	NOTE
А	1.35	-	1.75	
A1	0.10	-	0.25	
b	0.31	-	0.51	
С	0.17	-	0.25	
D	4.80	-	5.05	
E1	3.81	-	3.99	
E	5.79	_	6.20	
е		1.27 BSC		
L	0.40	_	1.27	
θ	0°	_	8°	

Note: These drawings are for general information only. Refer to JEDEC Drawing MS-012, Variation AA for proper dimensions, tolerances, datums, etc.


3/17/05



6.2 8A2 - TSSOP


Top View

End View

COMMON DIMENSIONS

(Unit of Measure = mm)

Side View

SYMBOL	MIN	NOM	MAX	NOTE
D	2.90	3.00	3.10	2, 5
Е		6.40 BSC		
E1	4.30	4.40	4.50	3, 5
Α	_	_	1.20	
A2	0.80	1.00	1.05	
b	0.19	_	0.30	4
е				
L	0.45	0.60	0.75	
L1		1.00 REF		

Notes: 1. This drawing is for general information only. Refer to JEDEC Drawing MO-153, Variation AA, for proper dimensions, tolerances, datums, etc.

- 2. Dimension D does not include mold Flash, protrusions or gate burrs. Mold Flash, protrusions and gate burrs shall not exceed 0.15 mm (0.006 in) per side.
- 3. Dimension E1 does not include inter-lead Flash or protrusions. Inter-lead Flash and protrusions shall not exceed 0.25 mm (0.010 in) per side.
- 4. Dimension b does not include Dambar protrusion. Allowable Dambar protrusion shall be 0.08 mm total in excess of the b dimension at maximum material condition. Dambar cannot be located on the lower radius of the foot. Minimum space between protrusion and adjacent lead is 0.07 mm.
- 5. Dimension D and E1 to be determined at Datum Plane H.

5/30/02

		TITLE	DRAWING NO.	REV.
<u>Alm</u>	2325 Orchard Parkway San Jose, CA 95131	8A2, 8-lead, 4.4 mm Body, Plastic Thin Shrink Small Outline Package (TSSOP)	8A2	В

7. Revision History

Doc. Rev.	Date	Comments
5096E	1/2008	Moved to new template Replaced Table 5 with correct version
5096D	2/2007	Removed PDIP package offering Removed Pb'd part numbers
5096C	9/2006	Revision history implemented; Removed 'Preliminary' status from datasheet.

Headquarters

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131 USA

Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

International

Atmel Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong

Tel: (852) 2721-9778 Fax: (852) 2722-1369 Atmel Europe

Le Krebs 8, Rue Jean-Pierre Timbaud BP 309 78054 Saint-Quentin-en-Yvelines Cedex France

Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11

Atmel Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan

Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Product Contact

Web Site

www.atmel.com

Technical Support

s_eeprom@atmel.com

Sales Contact

www.atmel.com/contacts

Literature Requests www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2008 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, and others, are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.