Electrically Insulating High Performance, Thermally Conductive Phase Change Material

Features and Benefits

- Thermal impedance: 0.18°C-in²/W (@25 psi)
- · Natural tack for ease of assembly
- Exceptional thermal performance in an insulated pad

Hi-Flow 330P is a thermally conductive phase change material featuring a natural tack on one side and reinforced with a polyimide film. The polyimide film provides a high dielectric strength and cut-through resistance. Hi-Flow 330P offers excellent handling and consistent liner peel-off characteristics. The material is designed for use between a high power electrical device requiring electrical isolation and its heat sink. Bergquist recommends the use clips or springs for phase change materials to assure constant pressure between the component interface and the heat sink.

Typical Applications

- · Spring / clip-mounted devices
- Discrete power semiconductors and modules

Configurations Available

- · Roll form, die-cut parts, sheet form
- Available with 1.0 mil (Hi-Row 330P1.0),
 1.5 mil (Hi-Row 330P1.5) or 2.0 mil
 (Hi-Row 330P2.0) Polyimide reinforcement carrier

TYPICAL PROPERTIES OF HI-FLOW 330P						
PROPERTY	IMPERIALVALUE		METRIC VALUE		TEST METHOD	
Color	Gold		Gold		Visual	
Reinforcement Carrier	Polyimide		Polyimide		_	
Thickness (inch) / (mm)	0.0045 - 0.0055		0.114 - 0.140		_	
Film Thickness (inch) / (mm)	0.001 - 0.002		0.025 - 0.050		ASTM D374	
Inherent Surface Tack (1 or 2-Side)	1		1		_	
Elongation (%)	40		40		ASTM D882A	
Tensile Strength (psi)	7000		7000		ASTM D882A	
Continuous Use Temp (℉/ ℃)	-40 to 257		-40 to 125		_	
Phase Change SofteningTemp (F/°C)	126		52		ASTM D3418	
ELECTRICAL						
Dielectric Breakdown Voltage (Vac)	5000		5000		ASTM D149	
Dielectric Constant (1000 Hz)	4.5		4.5		ASTM D150	
Volume Resistivity (Ohm-meter)	1012		1012		ASTM D257	
Flame Rating	V-O		V-O		U.L. 94	
THERMAL						
Thermal Conductivity (W/m-K)(1)	1.	.4	1.4		ASTM D5470	
THERMAL PERFORMANCE vs PRESSURE						
Pres	ssure (psi)	10	25	50	100	200
TO-220 Thermal Performance (°C/W) 0.0010"		1.22	1.17	1.13	1.10	1.08
TO-220 Thermal Performance (°C/W) 0.0015"		1.44	1.40	1.38	1.35	1.33
TO-220 Thermal Performance (°C/W) 0.0020"		1.67	1.63	1.60	1.58	1.54
Thermal Impedance (°C-in²/W)(2) 0.0010"		0.19	0.18	0.17	0.16	0.15
Thermal Impedance (°C-in²/W)(2) 0.0015"		0.21	0.21	0.21	0.19	0.18
Thermal Impedance (°C-in²/W)(2	2) 0.0020"	0.26	0.26	0.24	0.23	0.22

1) This is the measured thermal conductivity of the Hi-Flow wax coating it represents one conducting layer in a three-layer laminate. The Hi-Flow coatings are phase change compounds. These layers will respond to heat and pressure induced stresses. The overall conductivity of the material in post-phase change, thin film products is highly dependent upon the heat and pressure applied. This characteristic is not accounted for in ASTM D5470. Please contact Bergquist Product Management if additional specifications are required.
2) The ASTM D5470 test fixture was used and the test sample was conditioned at 70°C prior to test. The recorded value includes interfacial thermal resistance. These values are provided for reference only. Actual application performance is directly related to the surface roughness, flatness and pressure applied.

Building a Part Number

HF330P 0.001 ACMF10256 Rev a 44 example NA = Selected standard option. If not selecting a standard Section A Section Section Section option, insert company name, drawing number, and = Standard configuration dash number 1112 = 11" x 12" sheets 11/250 = 11" x 250' rolls or 00 = custom configuration 01 = Natural Tack Standard Polyimide Thickness Available = 0.001", 0.0015", 0.002' HF330P = Hi-Flow 330P Phase Chance Material

Note: To build a part number, visit our website at www.bergquistcompany.com.

Hi-Flow®: U.S. Patent 6,197,859 and others

www.bergquistcompany.com

Standard Options