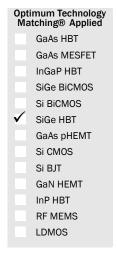
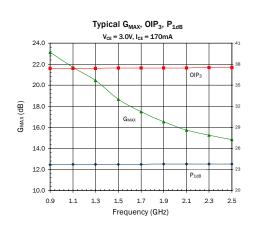


SGA9089Z

HIGH IP₃, MEDIUM POWER DISCRETE SIGE TRANSISTOR


Package: SOT-89



Product Description

RFMD's SGA9089Z is a high performance Silicon Germanium Heterostructure Bipolar Transistor (SiGe HBT) designed for operation from 50MHz to 4.0GHz. The SGA9089Z is optimized for 3V operation. The device provides excellent linearity at a low cost. It can be operated over a wide range of currents depending on the power and linearity requirements.

Features

- 0.05 GHz to 4 GHz Operation
- 15.0dB G_{MAX} at 2.44GHz
- P_{1dB}=+23.8dBm at 2.44GHz
- \bullet OIP₃=+37.5dBm at 2.44GHz
- 3.1dB NF at 2.44GHz
- Low Cost, High Performance, Versatility

Applications

- Analog and Digital Wireless Systems
- 3G, Cellular, PCS, RFID
- Fixed Wireless, Pager Systems
- PA Stage for Medium Power Applications

Parameter	Specification			Unit	O and distant	
Farameter	Min.	Тур.	Max.	UIIIL	Condition	
Maximum Available Gain, $Z_S = Z_S^*$, $Z_L = Z_L^*$		23.2		dB	880MHz	
		16.4		dB	1960MHz	
		15.0		dB	2440MHz	
Output Power at 1dB Compression ^[2] , $Z_S = Z_{SOPT}$, $Z_L = Z_{LOPT}$		23.7		dBm	880 MHz and 1960 MHz	
		23.8		dBm	2440MHz	
Output Third Order Intercept Point, $Z_S = Z_{SOPT}$, $Z_L = Z_{LOPT}$		37.4		dBm	880 MHz	
		37.5		dBm	1960 MHz and 2440 MHz	
Power Gain, $Z_S = Z_{SOPT}$, $Z_L = Z_{LOPT}$		18.0		dB	880MHZ ^[1]	
		13.0		dB	1960MHz ^[2]	
		11.0		dB	2440 MHz ^[2]	
Noise Figure ^[2] , $Z_S = Z_{SOPT}$, $Z_L = Z_{LOPT}$		3.2		dB	880 MHz	
		3.1		dB	1960MHz	
		3.1		dB	2440MHz	
DC Current Gain	100	180	300			
Thermal Resistance		48		°C/W	Junction - lead	
Breakdown Voltage	5.7	6.0		V	Collector - Emitter	
Device Operating Voltage			3.8	V	Collector - Emitter	
Device Operating Current			220	mA	Collector - Emitter	

Test Conditions: V_{CE} = 3V, I_{CE} = 170 mA Typ. (unless otherwise noted), T_L = 25 °C OIP₃ Tone Spacing = 1MHz, P_{OUT} per tone = 10 dBm [1] 100% production tested with Application Circuit [2] Data with Application Circuit

SGA9089Z

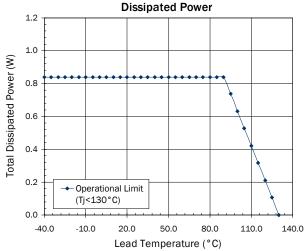
Absolute Maximum Ratings

Parameter	Rating	Unit
Device Current (I _{CE})	235	mA
Base Current (I _B)	2.5	mA
Device Voltage (V _{CE})	4.5	V
Collector - Base Voltage (V _{CB})	12	V
Emitter - Base Voltage (V _{EB})	4.5	V
RF Input Power* (See Note)	24	dBm
Junction Temp (T _J)	+150	°C
Operating Temp Range (T _L)	See Graph	°C
Storage Temp	+150	°C
ESD Rating - Human Body Model (HBM)	Class 1C	
Moisture Sensitivity Level	MSL 2	

^{*}Note: Load condition $Z_I = 50\Omega$

Caution! ESD sensitive device.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied. tions is not implied.


tions is not implied.

The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

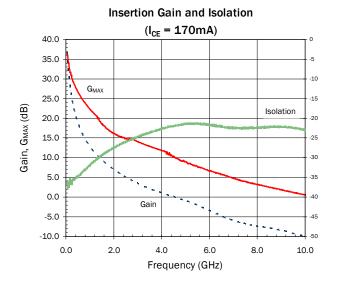
RFMD Green: RoHS compliant per EU Directive 2002/95/EC, halogen free per IEC 61249-2-21, < 1000 ppm each of antimony trioxide in polymeric materials and red phosphorus as a flame retardant, and <2% antimony in solder.

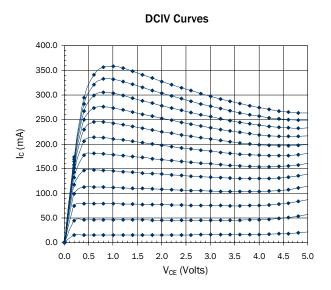
Maximum Recommended Operational

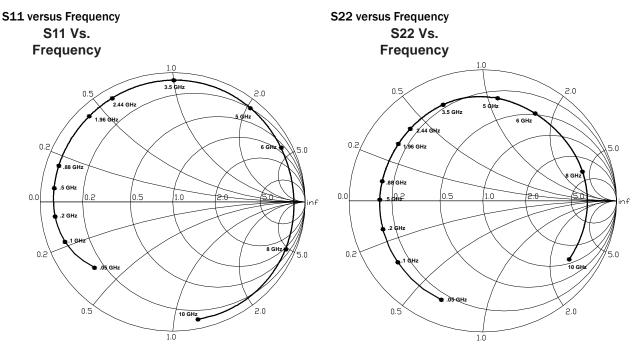
Typical Performance with 2.45 GHz Application Circuit

Freq	VCE	ICE	P1dB	OIP3	Gain	S11	S22	NF	ZSOPT	ZLOPT
(MHz)	(v)	(mA)	(dBm)	(dBm)	(dB)	(dB)	(dB)	(dB)	(Ω)	(Ω)
880	3.0	170.0	23.7	37.4	18.0	-18.6	-18.7	3.2	15 - j5.9	14.2 - j2.8
2440	3.0	170.0	23.8	37.5	11.0	-18.7	-23.9	3.1	11.8 - j27.6	16.4 - j14.2

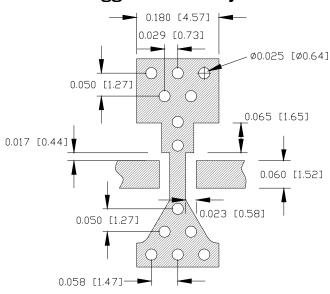
Test Conditions:V_S=5V I_S=180 mA Typ. OIP₃ Tone Spacing=1MHz, P_{OUT} per tone=10 dBm T_L=25 °C


Operation of this device beyond any one of these limits may cause permanent damage. For reliable continuous operation, the device voltage and current must not exceed the maximum operating values specified in the table on page one.

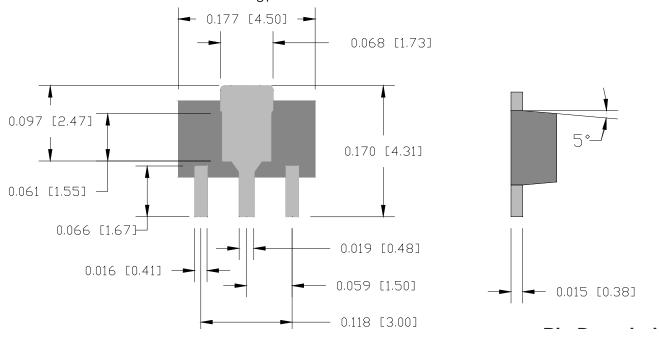

Bias Conditions should also satisfy the following expression: $I_DV_D < (T_J - T_L) / R_{TH}, j - I$ and $T_L = T_{LEAD}$



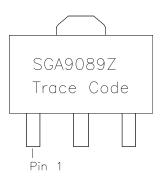
rfmd.com


Note:

S-parameters are de-embedded to the device leads with ZS=ZL= 50Ω . De-embedded S-parameters can be downloaded from our website (www.rfmd.com)


Pin	Function	Description
1	RF IN	RF input / Base Bias. External DC blocking capacitor required.
2, 4	GND	Connection to ground. Use via holes to reduce lead inductance. Place via holes as close to lead as possible.
3	RF OUT	RF Out / Collector bias. External DC blocking capacitor required.

Suggested Pad Layout


Package Drawing

Dimensions in inches (millimeters)
Refer to drawing posted at www.rfmd.com for tolerances.

Part Identification

Ordering Information

Ordering Code	Description
SGA9089Z	7" Reel with 3000 pieces
SGA9089ZSQ	Sample bag with 25 pieces
SGA9089ZSR	7" Reel with 100 pieces
SGA9089Z-EVB1	870 MHz to 960 MHz, , 8V Operation PCBA
SGA9089Z-EVB2	1930MHz to 1990MHz, , 8V Operation PCBA
SGA9089Z-EVB3	2110MHz to 2170MHz, , 8V Operation PCBA
SGA9089Z-EVB4	2400 MHz to 2500 MHz, , 8V Operation PCBA