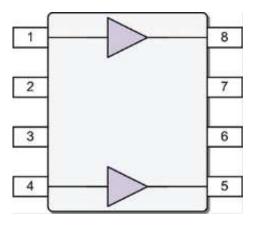


# DUAL CATV 40MHz TO 1008MHz HIGH LINEARITY, LOW NOISE GAAS AMPLIFIER

Package: Thermally Enhanced SOIC-8






#### **Features**

- 75Ω Push-Pull Amplifier
- 40MHz to 1008MHz Operation
- Internally Matched Input and Output
- 17dB Small Signal Gain
- 2.0dB Noise Figure
- Single 5V to 8V Positive Power Supply

### **Applications**

- Linear LNA/Driver
- CATV Line Driver Amplifier
- Broadband Gain Blocks
- FTTx / xPON / ONU Driver Amplifier



Functional Block Diagram

### **Product Description**

RFMD's RFCA8818 is a low-noise, linear high performance GaAs MESFET MMIC amplifier. The RFCA8818 contains two amplifiers for use in wideband push-pull CATV amplifiers requiring excellent second order performance. The second and third order non-linearities are greatly improved in the push-pull configuration.

#### **Ordering Information**

RFCA8818 Dual CATV 40MHz to 1008MHz High Linearity, low Noise GaAs

**Amplifier** 

RFCA8818PCBA Fully Assembled Evaluation Board

#### **Optimum Technology Matching® Applied**

| ☐ GaAs HBT           | ☐ SiGe BiCMOS | ☐ GaAs pHEMT | ☐ GaN HEMT  |
|----------------------|---------------|--------------|-------------|
| <b>▼</b> GaAs MESFET | ☐ Si BiCMOS   | ☐ Si CMOS    | ☐ BIFET HBT |
| ☐ InGaP HBT          | ☐ SiGe HBT    | ☐ Si BJT     |             |

RF MICRO DEVICES®, RFMD®, Optimum Technology Matching®, Enabling Wireless Connectivity™, PowerStar®, POLARIS™ TOTAL RADIO™ and UltimateBlue™ are trademarks of RFMD, LLC. BLUETOOTH is a trade mark owned by Bluetooth SiG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks and registered trademarks are the property of their respective owners. ©2012. RF Micro Devices, Inc.



### **Absolute Maximum Ratings**

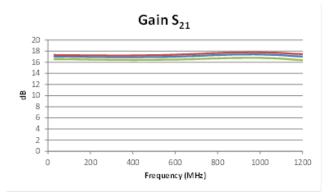
| Parameter                   | Rating      | Unit |
|-----------------------------|-------------|------|
| Device Voltage              | 9           | V    |
| RF Input Power              | 13          | dBm  |
| Operating Temperature Range | -40 to +85  | °C   |
| Storage Temperature Range   | -40 to +150 | °C   |

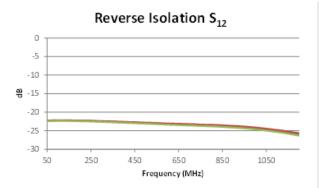


#### Caution! ESD sensitive device.

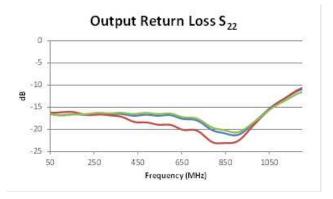
Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

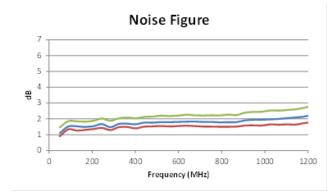
The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.





RFMD Green: RoHS compliant per EU Directive 2002/95/EC, halogen free per IEC 61249-2-21, < 1000 ppm each of antimony trioxide in polymeric materials and red phosphorus as a flame retardant, and <2% antimony in solder.

| Parameter                         | Specification |      | 11:4 | Oan diki an |                                                                             |
|-----------------------------------|---------------|------|------|-------------|-----------------------------------------------------------------------------|
|                                   | Min.          | Тур. | Max. | Unit        | Condition                                                                   |
| Overall 75 $\Omega$               |               |      |      |             | Temp = -40 °C to +85 °C, V <sub>CC</sub> = 7V, Standard Application Circuit |
| Frequency Range                   | 40            |      | 1008 | MHz         |                                                                             |
| Gain                              | 16            | 17   | 18   | dB          |                                                                             |
| Gain Flatness                     |               | ±1.0 |      | dB          | 40MHz to 1008MHz                                                            |
| Noise Figure                      |               | 2.0  | 2.5  | dB          | 40MHz to 1008MHz                                                            |
| Input Return Loss                 | 8             | 10   |      | dB          | 40MHz to 1008MHz                                                            |
| Output Return Loss                | 13            | 15   |      | dB          | 40MHz to 1008MHz                                                            |
| Output IP2                        | 53            | 61   | 70   | dBm         | 40MHz to 1008MHz, 30MHz tone spacing                                        |
| Output IP3                        | 35            | 37   |      | dBm         | 40MHz to 1008MHz                                                            |
| Output P1dB                       | 24            | 26   |      |             | 40MHz to 1008MHz                                                            |
| Distortion                        |               |      |      |             |                                                                             |
| CS0                               |               | -72  | -62  | dBc         | 77 channels to 550MHz, 34dBmV P <sub>OUT</sub>                              |
| СТВ                               |               | -70  | -64  | dBc         | 77 channels to 550MHz, 34dBmV P <sub>OUT</sub>                              |
| XMOD                              |               | -62  | -58  | dBc         | 77 channels to 550MHz, 34dBmV P <sub>OUT</sub>                              |
| Thermal                           |               |      |      |             |                                                                             |
| $\theta_{JC}$                     |               | 40   |      | °C/W        | Referenced to the GND via of Pin 2                                          |
| Maximum Junction Temperature      |               |      | 150  | °C          |                                                                             |
| Power Supply                      |               |      |      |             |                                                                             |
| Supply Voltage (V <sub>DD</sub> ) |               | 7    |      | V           |                                                                             |
| Operating Current Range           |               | 220  |      | mA          |                                                                             |



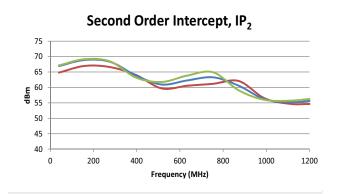


### **Typical Performance**

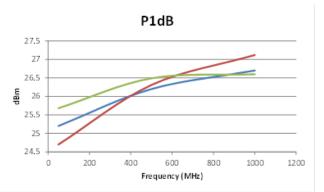


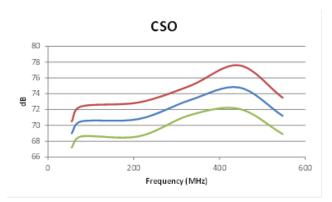


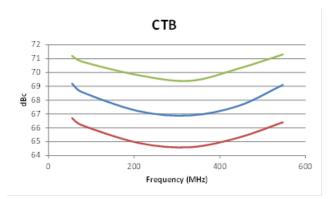


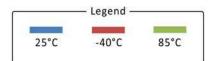




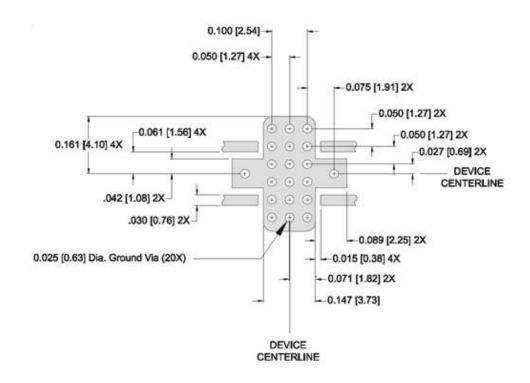


## **Typical Performance (continued)**











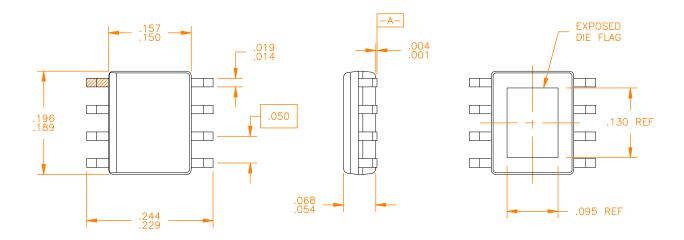


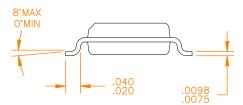

### **Pin Names and Descriptions**

| Pin        | Name        | Description                                                                                                                                                                                                                      |
|------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1          | RFIN        | Device 1, RF input pin. This pin is internally DC blocked. An external DC blocking capacitor is not required.                                                                                                                    |
| 2, 3, 6, 7 | GND         | Connection to ground. use via holes for best performance to reduce lead inductance as close to ground leads as possible.                                                                                                         |
| 4          | RFIN        | Device 1, RF input pin. This pin is internally DC blocked. An external DC blocking capacitor is not required.                                                                                                                    |
| 5          | RFOUT / VCC | Device 2, RF output and bias pin. Because DC is present on this pin, a DC blocking capacitor suitable for the frequency of operation should be used in most applications. For biasing, only an RF choke is needed.               |
| 8          | RFOUT / VCC | Device 1, RF output and bias pin. Because DC is present on this pin, a DC blocking capacitor suitable for the frequency of operation should be used in most applications. For biasing, only an RF choke is needed.               |
| EPAD       | GND         | Exposed area on the bottom side of the package must be soldered to the ground plane of the board for optimum thermal and RF performance. Several vias should be located under the EPAD as shown in the recommended land pattern. |

### **PCB Pad Layout**

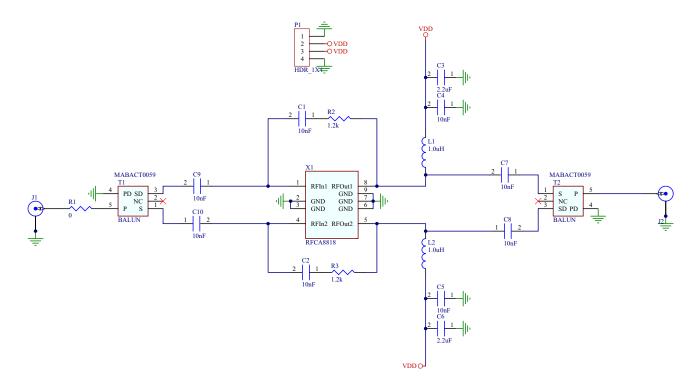






### **Package Drawing**

Package Type: Thermally Enhanced SOIC-8 Dimensions in inches

#### NOTES:


- SHADED LEAD IS PIN 1.
- 2. 3.
- LEAD COPLANARITY: .003 WITH RESPECT TO DATUM 'A'.
  DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.







## **Application Schematic**



### **Evaluation Board Bill of Materials (BOM)**

|             |                      | ,                                  |                    |  |
|-------------|----------------------|------------------------------------|--------------------|--|
| Description | Reference Designator | Manufacturer                       | Manufacturer's P/N |  |
| Capacitor   | C1-C2, C4-C5, C7-C10 | Murata Electronics                 | GRM188R71H103KA01D |  |
| Capacitor   | C3, C6               | Murata Electronics                 | GRM188R61A105KA61D |  |
| F-Connector | J1-J2                | Millimeter Wave Technologies, LLC  | MW-846-C-DD-75     |  |
| Inductor    | L1-L2                | Coilcraft, Inc.                    | 0805LS-102XJLC     |  |
| HDR_1X4     | P1                   | AMP                                | 640454-4           |  |
| Resistor    | R1                   | Panasonic Industrial Co.           | ERJ-3GEY0R00V      |  |
| Resistor    | R2-R3                | Panasonic Industrial Co.           | ERJ-3GEYJ122V      |  |
| BALUN       | T1-T2                | M/A-COM Technology Solutions, Inc. | MABACT0059         |  |
| RFCA8818    | X1                   | RFMD                               | RFCA8818           |  |