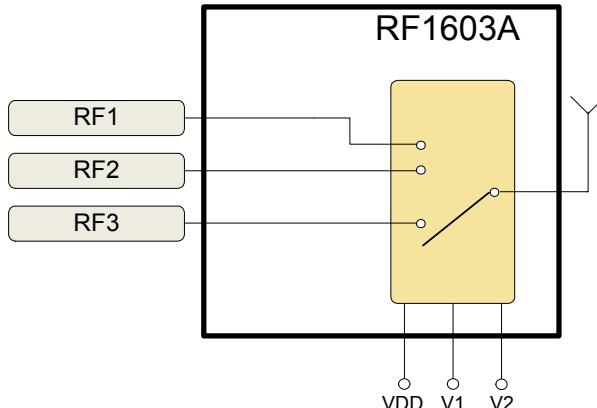


Package Style: QFN, 12-pin, 2.5mmx2.5mm



Features

- 2kV HBM ESD Protection on All Ports
- Low Frequency to 2.5GHz Operation
- Low Insertion Loss: 0.4dB at 1GHz
- Very High Isolation: 40dB at 1GHz
- Compatible With Low Voltage Logic (V_{HIGH} Min=1.3V)
- High Linearity: IIP2 > 120dBm
- No External DC Blocking Capacitors Required

Applications

- Multi-Mode GSM, WCDMA, CDMA Applications
- GSM/GPRS/EDGE Switch Applications
- Cellular Infrastructure Applications
- Receive Diversity Switching
- General Purpose Switching Applications

Functional Block Diagram

Product Description

The RF1603A is a single-pole three-throw (SP3T) switch designed for general purpose switching applications which require very low insertion loss and high power handling capability with minimal DC power consumption. The excellent linearity performance achieved by the RF1603A make it ideal for use in multimode GSM/EDGE/WCDMA/CDMA applications. The RF1603A offers very high isolation between the RF ports, providing greater RF separation between the transmit and receive paths, which is critical in full-duplex systems. Additionally, RF1603A includes integrated decoding logic, allowing just two control lines needed for switch control. The RF1603A is packaged in a very compact 2.5mmx2.5mm, 12-pin, leadless QFN package.

Ordering Information

RF1603A Broadband High Power SP3T Switch
 RF1603APCBA-410 Fully Assembled Evaluation Board

Optimum Technology Matching® Applied

<input type="checkbox"/> GaAs HBT	<input type="checkbox"/> SiGe BiCMOS	<input type="checkbox"/> GaAs pHEMT	<input type="checkbox"/> GaN HEMT
<input type="checkbox"/> GaAs MESFET	<input type="checkbox"/> Si BiCMOS	<input checked="" type="checkbox"/> Si CMOS	<input type="checkbox"/> RF MEMS
<input type="checkbox"/> InGaP HBT	<input type="checkbox"/> SiGe HBT	<input type="checkbox"/> Si BJT	<input type="checkbox"/> LDMOS

RF MICRO DEVICES®, RFMD®, Optimum Technology Matching®, Enabling Wireless Connectivity™, PowerStar®, POLARIS™, TOTAL RADIO™ and UltimateBlue™ are trademarks of RFMD, LLC. BLUETOOTH is a trademark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks and registered trademarks are the property of their respective owners. ©2006, RF Micro Devices, Inc.

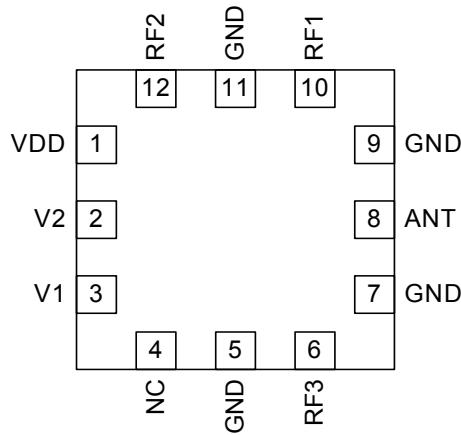
Absolute Maximum Ratings

Parameter	Rating	Unit
V_{DD}	3.0	V
Maximum Power Handling (6 to 1 VSWR over Temperature)	+36	dBm
Operating Temperature	-30 to +85	°C
Storage Temperature	-40 to +125	°C

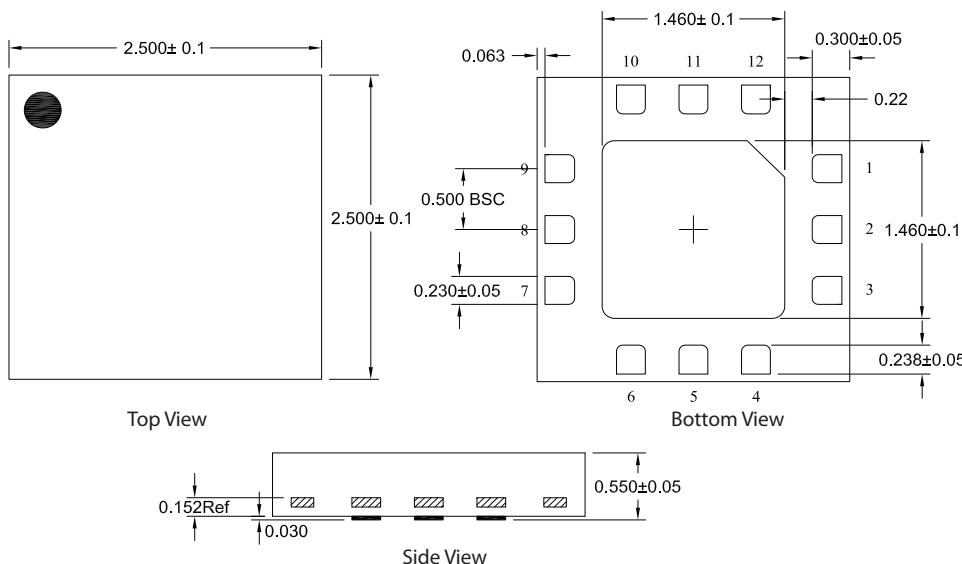
Caution! ESD sensitive device.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

RoHS status based on EU Directive 2002/95/EC (at time of this document revision).


The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

Parameter	Specification			Unit	Condition
	Min.	Typ.	Max.		
Electrical Characteristics					Active Mode: $V_{HIGH} \geq 1.8\text{V}$, $V_{LOW} \leq 0.3\text{V}$; Temp = 25 °C; $V_{DD} = 2.5\text{V}$ $P_{IN} = 35\text{dBm}$ @ 0.9GHz or 33dBm @ 1.9GHz; All RF ports terminated to $Z_0 = 50\Omega$.
Insertion Loss					
0.5GHz to 1GHz		0.40	0.55	dB	
1.0GHz		0.40	0.55	dB	
2.1GHz		0.45	0.55	dB	
2.5GHz		0.45	0.55	dB	
2.5GHz to 3.5GHz		0.7	0.85	dB	
Isolation					
0.5GHz to 1.0GHz	36	40		dB	
1.0GHz to 2.0GHz	32	35		dB	
2.1GHz	31	33		dB	
2.5GHz	30	31		dB	
2.5GHz to 3.5GHz	23	28		dB	
RF Port Return Loss					
	25	30		dB	0.5GHz to 2.5GHz, All RF ports in Insertion Loss state.
900MHz Harmonics					
Second Harmonic (2f ₀)		-85	-75	dBc	$P_{IN} = 35\text{dBm}$
Third Harmonic (3f ₀)		-90	-75	dBc	
1980MHz Harmonics					
Second Harmonic (2f ₀)		-85	-75	dBc	$P_{IN} = 33\text{dBm}$
Third Harmonic (3f ₀)		-90	-75	dBc	
IIP2					
RF1, RF2, RF3-ANT Cell	115	120		dBm	Tone 1: 836.5MHz at 26dBm, Tone 2: 1718MHz at -20dBm, Receive Freq: 881.5MHz
RF1, RF2, RF3-ANT AWS	115	120		dBm	Tone 1: 1732.5MHz at 26dBm, Tone 2: 3865MHz at -20dBm, Receive Freq: 2132.5MHz
RF1, RF2, RF3-ANT PCS	115	120		dBm	Tone 1: 1880MHz at 26dBm, Tone 2: 3840MHz at -20dBm, Receive Freq: 1960MHz


Parameter	Specification			Unit	Condition
	Min.	Typ.	Max.		
IIP3					
RF1, RF2, RF3-ANT Cell	70	73		dBm	Tone 1: 836.5MHz at 26dBm, Tone 2: 791.5MHz at -20dBm, Receive Freq: 881.5MHz
RF1, RF2, RF3-ANT IMT	70	73		dBm	Tone 1: 1950MHz at 26dBm, Tone 2: 1760MHz at -20dBm, Receive Freq: 2140MHz
Max Operating Power					
			36	dBm	50 ohms, Temp=25°C
			35	dBm	VSWR=6:1, Temp = -30° to +85°C
Switching Time					
Switching Speed ON		2	5	μs	50% control to 90% RF
Switching Speed OFF		2	5	μs	50% control to 10% RF
Start-Up Time			10	μs	Maximum set up time for the switch to reach fully compliant operation
Supply and Control Signal Characteristics					
Switched Supply Voltage (V_{DD})					
V_{HIGH}	2.2	2.4	2.7	V	
V_{LOW}		0	0.3	V	
Switched Supply Current (V_{DD})					
I_{HIGH}		50	100	μA	$P_{IN}=35\text{ dBm}$
I_{LOW}		0		mA	
Control Voltage (V1, V2)					
V_{HIGH}	1.3	1.8	2.6	V	
V_{LOW}	0	0	0.3	V	
Control Current (V1, V2)					
I_{HIGH}		1.0	5.0	μA	
I_{LOW}		0.5	1.0	μA	
Triple Beat Ratio (TBR)					
TBR BC0 (GSM800)	85	99		dBc	VSWR=2:1; Temp=-20°C, 25°C, 85°C
TBR BC1 (PCS)	85	99		dBc	VSWR=2:1; Temp=-20°C, 25°C, 85°C
TBR BC4	85	99		dBc	VSWR=2:1; Temp=-20°C, 25°C, 85°C
TBR BC5 (GSM400)	85	99		dBc	VSWR=2:1; Temp=-20°C, 25°C, 85°C
TBR BC14 (PCS)	85	99		dBc	VSWR=2:1; Temp=-20°C, 25°C, 85°C
TBR BC15 (AWS)	85	99		dBc	VSWR=2:1; Temp=-20°C, 25°C, 85°C

Pin	Function	Description
1	VDD	Supply. The voltage at this node will be switched and it is important that the switch is operating within the specified start up time. This signal might be used as a mode control.
2	V2	Control signal 2.
3	V1	Control signal 1.
4	NC	Not connected (may be grounded in PCB).
5	GND	Ground.
6	RF3	RF output 3.
7	GND	Ground.
8	ANT	RF input (connected to antenna).
9	GND	Ground.
10	RF1	RF output 1.
11	GND	Ground.
12	RF2	RF output 2.
Pkg Base	GND	Ground.

Pin Out

Package Drawing

1) PIN 1 INDICATOR SHADED AREA

2) CHAMFERED AREA IS PIN 1 INDICATOR

General Information

Truth Table for Switch States

State	V1	V2	RF Path
1	V_{LOW}	V_{LOW}	ANT-RF1
2	V_{LOW}	V_{HIGH}	ANT-RF2
3	V_{HIGH}	V_{LOW}	ANT-RF3
4	V_{HIGH}	V_{HIGH}	High Impedance

Control Logic

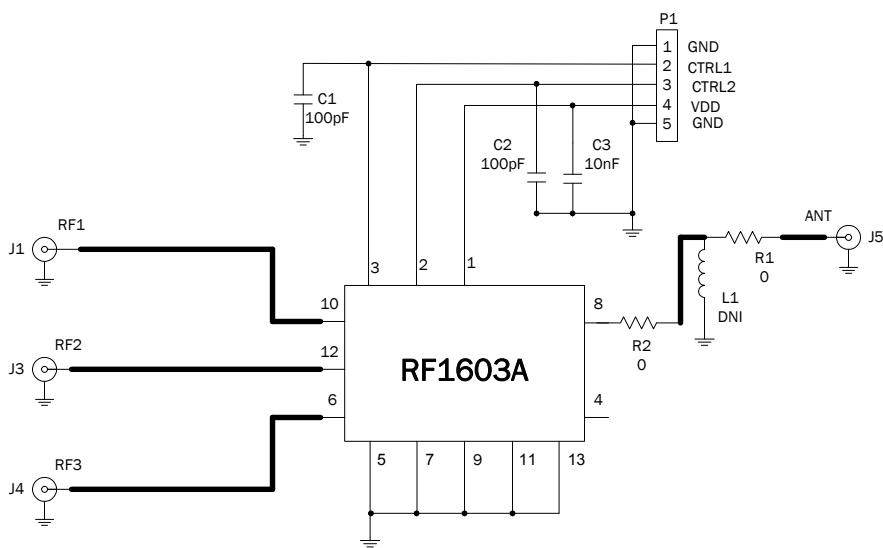
The switch is operable in four states (see Truth Table). When V_{DD} is high, the switch is active. The start-up time is defined as the delay time that control signal(s) cross 0.8V threshold until KF output level is 90% of final RF voltage peak.

Power Sequence

ON Sequence: First turn ON V_{DD} , then apply control signals.

OFF Sequence: First turn OFF the control signals, then turn OFF V_{DD} .

Note:


Not following the power ON/OFF sequence could cause damage to the switch and may affect the long-term reliability of the device.

Electrical Test Methods

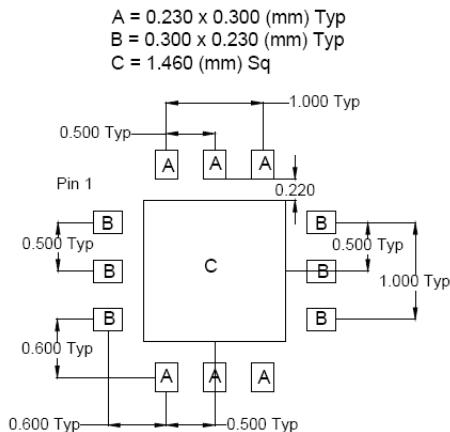
The electrical parameters for the switch were measured on RFMD evaluation board. The test PWB includes means for decoupling RF signals from control signal port (shunt capacitor at control signal ports).

All measurements are done with calibration plane at switch pins. The effect of test board losses and phase delay has been removed from the results.

Evaluation Board Schematic

Denotes 50 ohm transmission line

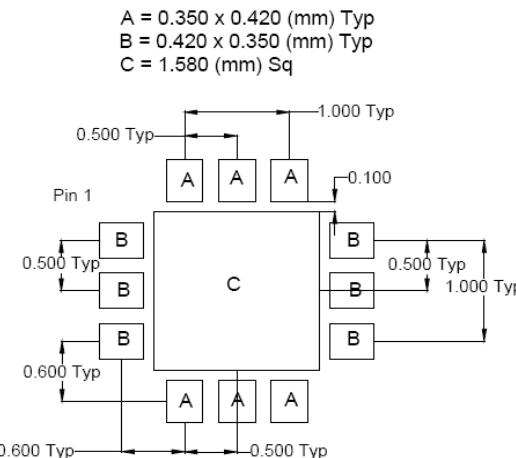
PCB Design Requirements


PCB Surface Finish

The PCB surface finish used for RFMD's qualification process is electroless nickel, immersion gold. Typical thickness is $3\mu\text{inch}$ to $8\mu\text{inch}$ gold over $180\mu\text{inch}$ nickel.

PCB Land Pattern Recommendation

PCB land patterns for RFMD components are based on IPC-7351 standards and RFMD empirical data. The pad pattern shown has been developed and tested for optimized assembly at RFMD. The PCB land pattern has been developed to accommodate lead and package tolerances. Since surface mount processes vary from company to company, careful process development is recommended.

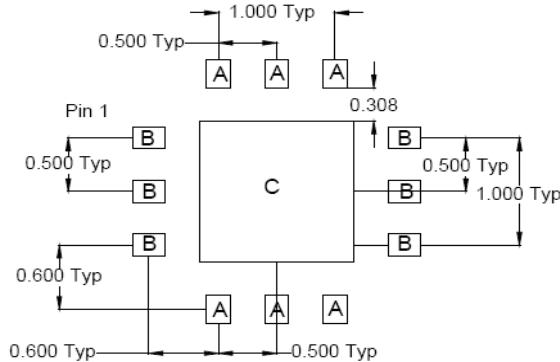

PCB Metal Land Pattern

PCB METAL LAND PATTERN

PCB Solder Mask Pattern

Liquid Photo-Imageable (LPI) solder mask is recommended. The solder mask footprint will match what is shown for the PCB metal land pattern with a 2 mil to 3 mil expansion to accommodate solder mask registration clearance around all pads. The center-grounding pad shall also have a solder mask clearance. Expansion of the pads to create solder mask clearance can be provided in the master data or requested from the PCB fabrication supplier.

PCB SOLDER MASK LAND PATTERN


Thermal Pad and Via Design

The PCB land pattern has been designed with a thermal pad that matches the die paddle size on the bottom of the device.

Thermal vias are required in the PCB layout to effectively conduct heat away from the package. The via pattern has been designed to address thermal, power dissipation and electrical requirements of the device as well as accommodating routing strategies.

The via pattern used for the RFMD qualification is based on thru-hole vias with 0.203 mm to 0.330 mm finished hole size on a 0.5 mm to 1.2 mm grid pattern with 0.025 mm plating on via walls. If micro vias are used in a design, it is suggested that the quantity of vias be increased by a 4:1 ratio to achieve similar results.

A = 0.207 x 0.270 (mm) Typ
B = 0.270 x 0.207 (mm) Typ
C = 1.314 (mm) Sq

PCB STENCIL PATTERN