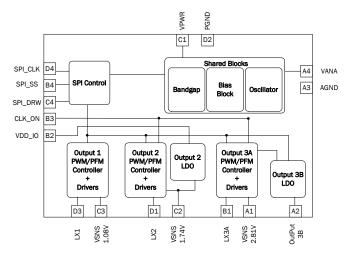
POWER MANAGEMENT IC

Package: 16-Bump WLCSP, 4x4 Array, 1.73mmx1.73mm



Features

- 3 High Efficiency DC to DC Buck Converters
- 2 Low Noise LDOs
- Wide Voltage Range (2.5 V to 5.1 V)
- 2.8 MHz PWM Switching Frequency
- Low Quiescent Current
- Auto PFM/PWM Controller
- Programmable Via SPI
- Small, Wafer-Level Chip-Scale Package
- Over-current (OC) Protection

Applications

- Transceiver Power Management
- LTE, 2G/3G Multi-Mode, Multi-Band Handsets
- Quad-Band GSM/EDGE Handsets
- Multi-Band UMTS Handsets

Functional Block Diagram

Product Description

The RF6590 is a power management IC designed for use in transceiver applications, consisting of three low-voltage, high-efficiency, low-ripple DC to DC buck converters and two low-noise LDOs. Using the RF6590 in handset applications can reduce transceiver battery current by up to 50%. Each DC to DC converter has a PWM and a PFM controller to enhance efficiency at light load current conditions. Over-current protection is employed to protect the device during a fault mode.

Ordering Information

RF6590 Power Management IC

RF6590PCBA-41X Fully Assembled Evaluation Board

Optimum Technology Matching® Applied ☐ GaAs HBT ☐ SiGe BiCMOS ☐ GaAs pHEMT ☐ GaN HEMT ☐ GaAs MESFET ☐ Si BiCMOS ☐ Si CMOS ☐ RF MEMS ☐ InGaP HBT ☐ SiGe HBT ☐ Si BJT ☐ LDMOS

Absolute Maximum Ratings

Parameter	Rating	Unit
Battery Voltage	-0.30 to +6.00	V
Short Circuit at Output	No damage	
Storage Temperature	-65 to +125	°C
Operating Temperature	-30 to +85	°C
Moisture Sensitivity	MSL1	Per J-STD-020

Caution! ESD sensitive device.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

RoHS status based on EUDirective 2002/95/EC (at time of this document revision).

The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

Dawanatan		Specification			0 450	
Parameter	Min.	Min. Typ.		Unit	Condition	
Overall					All Nominal Test Conditions Unless Otherwise Stated, (V _{BATT} =3.8V, Temp. = 25 °C.)	
Battery Voltage (V _{BAT})	2.90	3.80	5.10	V		
Reduced Performance 1 (V _{BAT})	2.70		2.90	V	IC must remain functional. Output 3A and 3B are allowed to fall below specified toler- ance range. Ripple and noise requirements do not need to be fulfilled	
Reduced Performance 2 (V _{BAT})	2.50		2.70	V	Only in >SLEEP< and >CLOCK< (Output 3B is off), IC must remain functional, Output 3A is allowed to fall down to 2.49V at a load current of 5 mA, Ripple and noise requirements not fulfilled	
General						
OFF						
Total Leakage Current		3	10	μА	VDD_IO=0, CLK_ON=0; Output 1, 2, 3A, and 3B OFF, No Load	
Power Mode >SLEEP<						
Total Loss Current		18	25	μА	VDD_IO=1, CLK_ON=0; Output 1, 3A, and 3B OFF, Output 2 in >SLEEP<, No Load	
Power Mode >CLOCK<						
Total Loss Current		440	500	μА	VDD_IO=1, CLK_ON=1; Output 1 and 3B OFF, Output 2 and 3A in >CLOCK<, No Load	
Power Mode >TRX<						
Total Loss Current		770	850	μА	VDD_IO=1, CLK_ON=1, via SPI; Output 1, 2, 3A, and 3B in Nominal Operation, >TRX<, No Load	

Davamatav	Specification			I locit	Condition	
Parameter	Min.	Тур.	Max.	Unit	Condition	
Hardware Control Lines		_		_		
VDD_IO High Level	1.15	1.2	1.25	V	Logic HIGH state depends on the operating voltage of the baseband or transceiver unit	
	1.17	1.8	1.85	V	that drives VDD_IO, CLK_ON, and three SPI logic lines.	
CLK_ON Low Level Threshold			0.3*VDD_IO	V		
CLK_ON High Level Threshold	0.7*VDD_IO			V		
Note: Basic loss currents above are un	derstood to be i	independent fro	m Output curre	nt.		
SPI (Serial Peripheral Interface)						
Logic Levels						
Input Low Level			0.55	V	SPI_CLK, SPI_SS, SPI_DRW	
Input High Level	1.2			V	SPI_CLK, SPI_SS, SPI_DRW	
Output Low Level			0.35	V	SPI_DRW	
Output High Level	1.5			V	SPI_DRW	
Multi-Device SPI Requirements						
Input Capacitance			6.0	pF	SPI_CLK, SPI_SS, SPI_DRW	
Output Load Capacitance (Driven by PMU)	36.0			pF	SPI_DRW	
Communication Speed						
Nominal Clock Rate	6.5		26.0	MHz	SPI_CLK	
Clock Frequency	0.1					
Clock Duty Cycle	45	50	55	%		
Data Setup Time	13.2			ns	in read mode	
Data Hold Time	13.2			ns	in read mode	
Data Setup Time	4			ns	in read mode	
Data Hold Time	15.8			ns	in read mode	
Output 1						
Power Mode >TRX< (upon SPI programming):						
Nominal Output Voltage	1.044	1.080	1.116	V	Including ripple	
Load Current		40	100	mA		
Efficiency at 1mA Load Current	75	83		%	Auto Mode	
Efficiency ≥5 mA Load Current	76	83		%	Auto Mode	
Efficiency ≥20 mA Load Current	78	87		%	Auto Mode	
Output 2						
Power Mode >SLEEP< (VDD_IO=1, CLK_ON=0):						
Nominal Output Voltage	1.700	1.800	1.920	V		
Load Current		0.02	5.00	mA		
Power Mode >CLOCK< (VDD_IO=1, CLK_ON=1):						
Nominal Output Voltage	1.683	1.740	1.797	V	Including Ripple	
Load Current			50	mA		
Efficiency at 1mA Load Current	81	87		%		
Efficiency ≥5 mA Load Current	83	88		%		

Parameter	Specification			Unit	0	
Parameter	Min.	Тур.	Max.	- Unit	Condition	
Output 2, cont.						
Power Mode >TRX< (upon SPI programming):						
Nominal Output Voltage	1.683	1.740	1.797	V		
Output Voltage Tolerance in PFM Mode	1.683	1.740	1.797	V	Including Ripple	
Output Voltage Tolerance in PWM Mode	1.702	1.740	1.778	V	Including ripple	
Load Current		90	170	mA		
Efficiency at 1mA Load Current	81	87		%	Auto Mode	
Efficiency ≥5 mA Load Current	78	88		%	Auto Mode	
Efficiency ≥20 mA Load Current	78	91		%	Auto Mode	
Output 3A						
Power Mode >CLOCK< (VDD_IO=1, CLK_ON=1):						
Nominal Output Voltage	2.712	2.810	2.903	V	Including Ripple	
Load Current			15	mA		
Efficiency at 1mA Load Current	90	91		%		
Efficiency ≥5 mA Load Current	90	93		%		
Power Mode >TRX< (Upon SPI Programming):						
Nominal Output Voltage	2.712	2.810	2.903	V	Including Ripple	
Load Current		80	160	mA	(including supply current for Output 3B)	
Efficiency at 1mA Load Current	87	91		%	Auto Mode	
Efficiency ≥5 mA Load Current	87	93		%	Auto Mode	
Output 3B						
Power Mode >TRX< (upon SPI Programming):						
Nominal Output Voltage	-40	Output 3A-200	+40	mV	Follows Output 3A with fixed 200 mV drop, V _{OUT} DAC set to 2.81 V	
Load Current			90	mA		

Operational Notes

Truth Table

(fm BB)	(fm XCVR)		Control	DC to DC	DC to DC	LDO	DC to DC	LDO
VDD_IO	CLK_ON	Mode	SPI	Output 1	Output 2	Output 2	Output 3A	Output 3B
Low	Low	OFF	Off	Off	Off	Off	Off	Off
High	Low	SLEEP	Off	Off	Off	1.8V (<5mA)	Off	Off
High	High	CLK	Off	Off	1.74V Forced PFM <50mA	Off	2.81 V Forced PFM <15 mA	Off
High	High	TRX*	On	1.08V Auto PWM/PFM (<100 mA)	1.74V Auto PWM/PFM <170mA	Off	2.81V Auto PWM/PFM <70mA	2.61V<90mA Powered from Out3A

^{*}Programmed via SPI Interface

Typical Power on Sequence

- 1. Apply VBATT
- 2. Apply VDD_IO
- 3. Apply CLK_ON
- 4. Write to register to enable TRX mode

Typical Power off Sequence

Power off sequence is in the opposite order of Power on Sequence.

RF6590 Operational Description

Overview

The RF6590 power management IC is designed to work in a transceiver application with four modes of operation requiring up to four Output voltages in TRX mode (Output 1 and Output 3A are DC to DC converters, Output 2 is a parallel DC to DC converter/LDO, and Output 3B is an LDO). Mode-to-mode control is achieved with a combination of GPIO pins (VDD_IO and CLK_ON) and SPI. In addition, features such as the Output voltage can be adjusted through SPI programming.

Operation by Mode

Off Mode

- GPIO: VDD_IO and CLK_ON = logic 0.
- · SPI: None.

Description: In this mode of operation the RF6590 is completely shutdown (no Output voltages are generated). Only process leakage currents are drawn from the battery. Default states for Output 1, Output 3A and Output 3B are high impedance while for Output 2 it is pull-down.

SLP Mode

- GPIO: VDD_IO= logic 1 (1.2V or 1.8V), and CLK_ON = logic 0.
- · SPI: None.

Description: In this mode of operation only the ultra low current Output 2 LDO is enabled. The Output voltage is nominally 1.80V and load current is less than 5 mA. Max Output voltage settling time is 100 µs.

CLK Mode

- GPIO: VDD_IO and CLK_ON = logic 1 (both 1.2V or 1.8V must be same voltage level).
- · SPI: None

Description: In this mode of operation, the Output 2 LDO is disabled and the Output 2 DC to DC converter is enabled in forced PFM mode. Nominal Output voltage for Output 2 in CLK mode is 1.74V and the max load current is 50mA. Output 3A DC to DC converter is enabled in this mode, also in forced PFM mode. Output 3A employs a soft-start feature to limit the in-rush current. No similar feature is employed on Output 2 since the external devices are already pre-charged in SLP mode. Output 3A nominal Output voltage is 2.81V and max load current is 15 mA.

TRX Mode

- GPIO: VDD_IO and CLK_ON = logic 1 (both 1.2 V or 1.8 V must be same voltage level).
- SPI: Use to enable/disable all Output and program Output voltages.

Description: This mode of operation begins when the transceiver internal LDO on Output 2 is enabled and used to pre-charge the external capacitors on Output 1. Once pre-charge is complete, Output 1, 2, and 3A are enabled through the SPI port. Nominal Output voltage for Output 1 is 1.08V (100mA max), for Output 2 is 1.74V (170mA max), and for Output 3A is 2.81V (160 mA max).

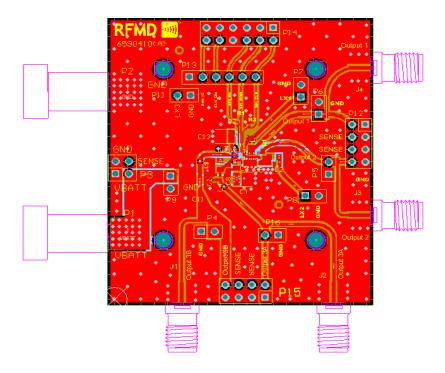
Since Output 1 is pre-charge the controller starts in forced PFM for ~10µs, giving the transceiver internal LDO time to shutdown. This is described as the override mode of operation for Output 1. Output 1 DC to DC converter will run (per SPI programmability) in auto PFM/PWM mode, based on load current. Once enabled through the SPI, Output 2 and Output 3A DC to DC converters will also transition from forced PFM mode to auto PFM/PWM control. Output 3B LDO (2.65V nominally, 90 mA max) will be enabled through the SPI port only during TX mode (not RX). Note that the supply for the Output 3B LDO is the Output 3A DC to DC converter. As a result, the max load current of 90 mA is included in the Output 3A max load current of 160 mA. Output 3B also employs an override mode similar to Output 1. An internal transceiver LDO will pre-charge Output 3B prior to RF transmission, then Output 3B is enabled through the SPI port and finally then the internal transceiver LDO is shutdown. In order to minimize the effect of ripple noise on the transceiver during RF transmission the DC to DC converters can be transiently switched into forced PWM mode. After transmission is complete the controllers can resume auto PFM/PWM operation to realize the efficiency benefits.

Shutdown Sequence

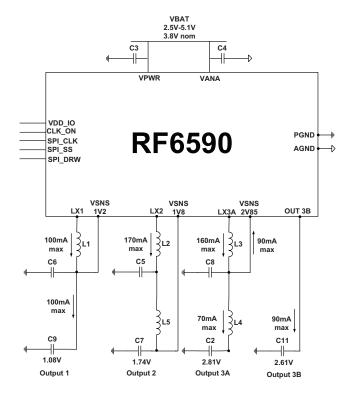
Typical shutdown mode-to-mode sequencing for the RF6590 is in the reverse order as described above: TRX, CLK, SLP, and OFF. Although this is the recommended sequence, it is not harmful if it not followed explicitly.

Fault Management

The RF6590 is over-current fault protected in all modes of operation. In CLK mode, with Output 2 and Output 3A DC to DC converters running in forced PFM mode, the converters are inherently over-current protected. In TRX mode, with the DC to DC converters running in auto PFM/PWM mode, the affected converter will automatically be disabled, the affiliated over-current bit is set and a parallel over-current LDO enabled in order to maintain the Output voltage. If the LDO cannot maintain the desired Output voltage, the affected Output is shutdown after \sim 20 μ s. The Output can be reset through the SPI port. If the fault persists the Output will shut down again.

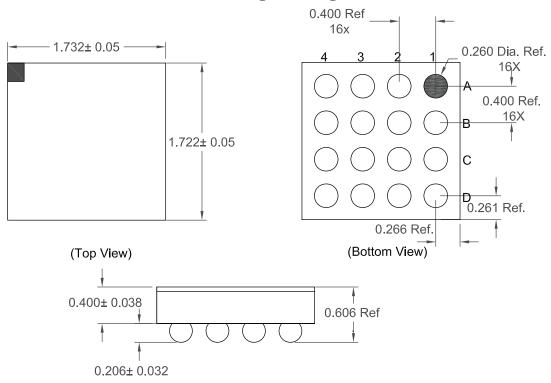

Other Operational Notes

- Logic HIGH state must be 1.2 volts OR 1.8 volts, depending on the operating voltage of the baseband or transceiver unit that drives VDD_IO, CLK_ON, and three SPI logic lines.
- SPI logic voltage should not exceed 1.8 volts (Output 2 supply) during operation.
- Do not exceed listed currents in CLK mode, otherwise the Output voltage will fall out of regulation.
- Register 0 must be restored by the controller, whenever the mode enters TRX mode. All registers should be considered volatile in OFF mode. The user needs to reprogram all registers after each power cycle (VDD IO goes low).
- · Output 3B current is sourced from Output 3A, so the combined load current should not exceed 160 mA.
- In TRX mode, each DC to DC converter independently switches between PFM and PWM modes, depending on load current, unless the control register bit is set for forced PWM or forced PFM mode.
- SPI mode is only enabled after RF6590 is in CLK state (after a 10 µs waiting period). The chip transitions to TRX mode when the OUTxTRX bits are set from 0 to 1. These are 4 MSB in register 0. [Reg 0, Ctrl (15:12)]
- Supply source for all Output is the VPWR pin and references to the PGND pin. See Application Notes from RFMD on suggested layout patterns to minimize current loops and stray noise coupling.
- VANA and reference AGND provide the current to operate internal control circuits.


Evaluation Board Layout

Board Thickness 0.042, Board Material FR-4

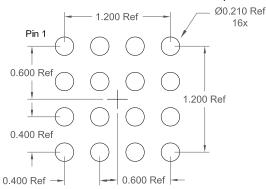
Application Schematic

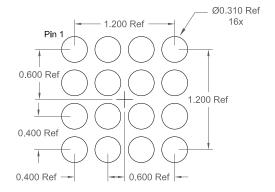


Recommended BOM

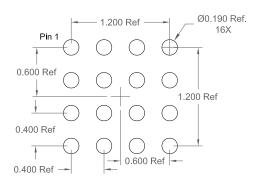
Designator	Case Size	Quantity	Value
C3	0603	1	4.7 μF
C4	0402	1	1.0μF
L1	2.0x1.25x1.0	1	4.7 μΗ
C6	0402	1	2.2μF
C9	0402	1	1.0μF
L2	2.0x1.25x1.0	1	4.7 μΗ
C5	0603	1	4.7 μF
L5	0402	1	15 nH
C7	0402	1	4.7 μF
L3	2.0x1.25x1.0	1	4.7 μΗ
C8	0603	1	4.7 μF
L4	0402	1	15 nH
C2	0402	1	1.0μF
C11	0402	1	4.7 μF

Package Drawing



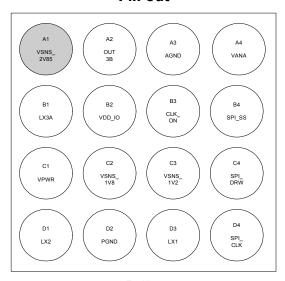

Notes:

- 1. Shaded area represents Pin 1 location.
- 2. All bumps are attached in the package with 0.21mm diameter UBM.


Metal, Solder, Stencil Pattern

PCB METAL LAND PATTERN

PCB SOLDER MASK PATTERN


PCB STENCIL PATTERN

Pin Description

Pin	Function	Description
A1	VSNS_2V85	Feedback node from DC to DC Converter Output 3A (2.81 V).
A2	OUT 3B	2.61 V LDO.
A3	AGND	Analog Ground.
A4	VANA	Power supply used for analog circuitry.
B1	LX3A	DC to DC Converter Output 3A. Connect to the filter inductor as recommended on application schematic.
B2	VDD_IO	Along with CLK_ON pin, determines mode of operation. See Truth Table.
В3	CLK_ON	Along with VDD_IO pin, determines mode of operation. See Truth Table.
В4	SPI_SS	Serial Interface enable signal.
C1	VPWR	Power Supply Voltage.
C2	VSNS_1V8	Feedback node from DC to DC Converter Output 2 (1.74 V).
СЗ	VSNS_1V2	Feedback node from DC to DC Converter Output 1 (1.08 V).
C4	SPI_DRW	Serial Interface data signal for read and write access.
D1	LX2	DC to DC Converter Output 2. Connect to the filter inductor as recommended on application schematic.
D2	PGND	Power Ground.
D3	LX1	DC to DC Converter Output 1. Connect to the filter inductor as recommended on application schematic.
D4	SPI_CLK	Serial Interface clock input.

Pin Out

Top View