

Features

- Excellent Linearity
- Superior Return Loss Performance
- Extremely Low Distortion
- Optimal Reliability
- Low Noise
- Unconditionally Stable Under All Terminations
- 38.3dB Typ. Gain at 100MHz
- 160mA Max. at 24VDC

Functional Block Diagram

Application

- 5 MHz to 100 MHz CATV Amplifier For Reverse Channel Systems

Product Description

The RFRP2920 is a hybrid reverse amplifier. The part employs a silicon die. It has extremely low distortion and superior return loss performance. The part also provides optimal reliability with low noise and is well suited for 5 MHz to 100 MHz CATV amplifiers for reverse channel systems.

Optimum Technology Matching® Applied

<input type="checkbox"/> GaAs HBT	<input type="checkbox"/> SiGe BiCMOS	<input type="checkbox"/> GaAs pHEMT	<input type="checkbox"/> GaN HEMT
<input type="checkbox"/> GaAs MESFET	<input type="checkbox"/> Si BiCMOS	<input type="checkbox"/> Si CMOS	<input type="checkbox"/> BiFET HBT
<input type="checkbox"/> InGaP HBT	<input type="checkbox"/> SiGe HBT	<input checked="" type="checkbox"/> Si BJT	<input type="checkbox"/> LDMOS

RF MICRO DEVICES®, RFMD®, Optimum Technology Matching®, Enabling Wireless Connectivity™, PowerStar®, POLARIS™ TOTAL RADIO™ and UltimateBlue™ are trademarks of RFMD, LLC. BLUETOOTH is a trademark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks and registered trademarks are the property of their respective owners. ©2006, RF Micro Devices, Inc.

Absolute Maximum Ratings

Parameter	Rating	Unit
RF Input Voltage (single tone)	65	dBmV
DC Supply Over-Voltage (5 minutes)	30	V
Storage Temperature	-40 to +100	°C
Operating Mounting Base Temperature	-30 to +100	°C

Caution! ESD sensitive device.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

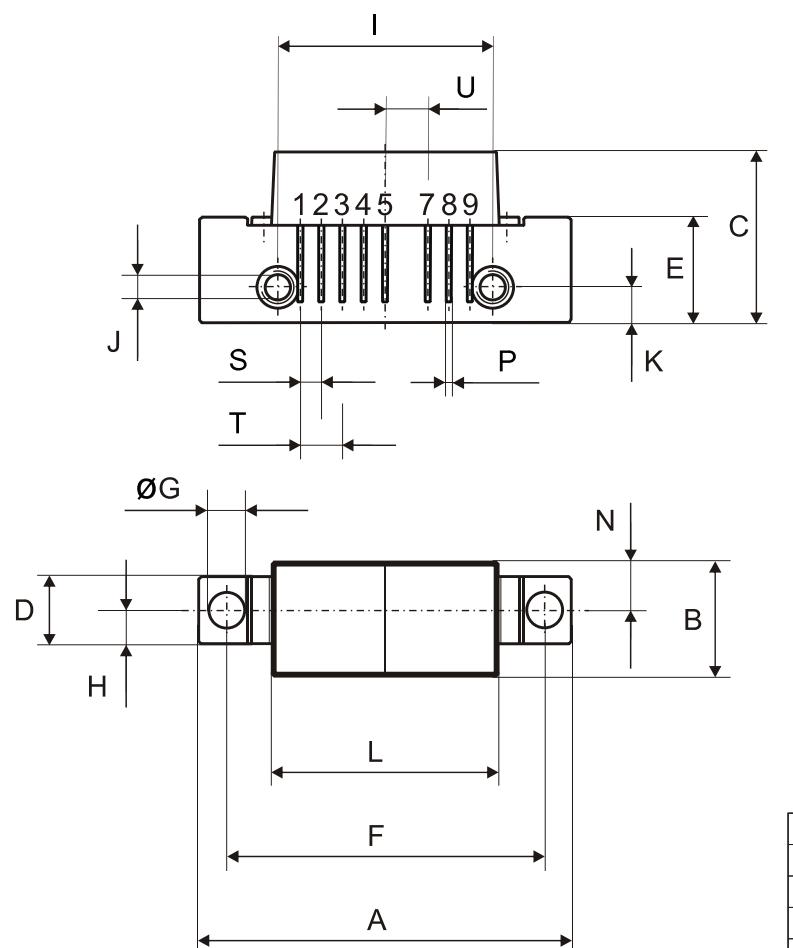
RoHS (Restriction of Hazardous Substances): Compliant per EU Directive 2002/95/EC.

Parameter	Specification			Unit	Condition
	Min.	Typ.	Max.		
Overall					$V_B=24V; T_{MB}=30^{\circ}C; Z_S=Z_L=75\Omega$
Power Gain ¹	37.8	38.3	38.6	dB	$f=5MHz$
	37.6	38.3		dB	$f=100MHz$
Slope ^[1]	-0.2	0	0.5	dB	$f=5MHz$ to $100MHz$
Flatness of Frequency Response			± 0.3	dB	$f=5MHz$ to $100MHz$
Input Return Loss	20.0			dB	$f=5MHz$ to $100MHz$
Output Return Loss	20.0			dB	$f=5MHz$ to $100MHz$
Noise Figure		3.8	4.2	dB	$f=100MHz$
Total Current Consumption (DC)	150.0	158.0	160.0	mA	
Distortion data 5MHz to 100MHz					
CTB			-72	dBc	7 ch flat; $V_0=50dBmV$ ^[2]
			-69	dBc	12 ch flat; $V_0=50dBmV$ ^[3]
XMOD			-64	dB	7 ch flat; $V_0=50dBmV$ ^[2]
			-61	dB	12 ch flat; $V_0=50dBmV$ ^[3]
CSO			-70	dBc	7 ch flat; $V_0=50dBmV$ ^[2]
			-68	dBc	12 ch flat; $V_0=50dBmV$ ^[3]
d_2			-70	dBc	^[4]
STB			-72	dB	^[5]

1. The slope is defined as the difference between the gain at the start frequency and the gain at the stop frequency.

2. 7 channels, US frequency raster: T7-T13(7.0MHz to 43.0MHz), +50dBmV flat output level.

3. 12 channels, US frequency raster: T7-T13 (7.0MHz to 43.0MHz), 2-6 (55.25MHz to 83.25MHz), +50dBmV flat output level.

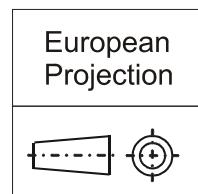

4. $f_1=7MHz$; $V_1=50dBmV$; $f_2=25MHz$; $V_2=50dBmV$; $f_{TEST}=f_1+f_2=32MHz$.

5. $f_1=13MHz$; $V_1=50dBmV$; $f_2=25MHz$; $V_2=V_1$; $f_3=7MHz$; $V_3=V_1$; $f_{TEST}=f_1+f_2+f_3=31MHz$.

Composite Second Order (CSO) - The CSO parameter (both sum and difference products) is defined by the NCTA.

Composite Triple Beat (CTB) - The CTB parameter is defined by the NCTA.

Cross Modulation (XMOD) - Cross modulation (XMOD) is measured at baseband (selective voltmeter method), referenced to 100% modulation of the carrier being tested.



Pinning:

0 5 10mm
scale

	1	2	3	4	5	6	7	8	9
INPUT									
GND			GND	IDC ADJUSTMENT					
					+VB				
OUTPUT						GND	GND		

Notes:

All Dimensions in mm:

	nominal	min	max
A	44,6 \pm 0,2	44,4	44,8
B	13,6 \pm 0,2	13,4	13,8
C	20,4 \pm 0,5	19,9	20,9
D	8 \pm 0,15	7,85	8,15
E	12,6 \pm 0,15	12,45	12,75
F	38,1 \pm 0,2	37,9	38,3
G	4 \pm 0,2 / -0,05	3,95	4,2
H	4 \pm 0,2	3,8	4,2
I	25,4 \pm 0,2	25,2	25,6
J	UNC 6-32	-	-
K	4,2 \pm 0,2	4,0	4,4
L	27,2 \pm 0,2	27,0	27,4
M	11,6 \pm 0,5	11,1	12,1
N	5,8 \pm 0,4	5,4	6,2
O	0,25 \pm 0,02	0,23	0,27
P	0,45 \pm 0,03	0,42	0,48
Q	2,54 \pm 0,3	2,24	2,84
R	2,54 \pm 0,5	2,04	3,04
S	2,54 \pm 0,25	2,29	2,79
T	5,08 \pm 0,25	4,83	5,33
U	5,08 \pm 0,25	4,83	5,33