

rfmd.com

RFPA1003

14.4GHz TO 15.4GHz HIGH LINEARITY POWER AMPLIFIER

Package: Ceramic QFN, 40-pin, 6mm x 6mm x 0.95mm

Features

Frequency Range: 14.4GHz to 15.4GHz

■ Small Signal Gain: 25dB

■ IM3 at +17dBm (SCL): +50dBc

■ IM3 at +22dBm (SCL): +40dBc

■ IM3 at +25dBm (SCL): +35dBc

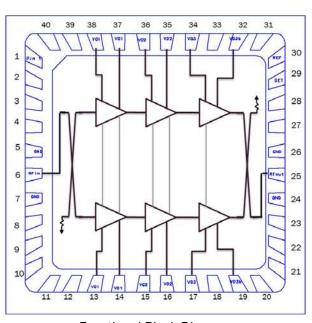
OIP3 at +25dBm (SCL): +42.5dBm

■ P1dB: +32.5dBm

■ P10B: +32.50BM

RL (Input): 7dB

RL (Output): 18dB


■ V_D: 7.5V

■ I_D: 1.0A

■ 6mm x 6mm QFN

Applications

- Point-Point Radio
- Point-Multipoint Radio

Functional Block Diagram

Product Description

RFMD's RFPA1003 is a high linearity power amplifier in a surface mount package designed for use in transmitters that operate at frequencies between 14.4GHz to 15.4GHz. It provides 25dB of small-signal gain. This power amplifier is optimized for linear operation with an output third order intercept point (OIP3) of \geq +42.0dBm. The RFPA1003 is manufactured with depletion mode GaAs pHEMT process.

Ordering Information

RFPA1003S2 2-Piece sample bag
RFPA1003SB 5-Piece bag
RFPA1003SQ 25-Piece bag
RFPA1003SR 100-Piece reel
RFPA1003TR7 750-Piece 7" reel
RFPA1003PCBA-410 Evaluation Board

Optimum Technology Matc	hing®	Applied
--------------------------------	-------	---------

☐ GaAs HBT	☐ SiGe BiCMOS	▼ GaAs pHEMT	☐ GaN HEMT
☐ GaAs MESFET	☐ Si BiCMOS	☐ Si CMOS	☐ BiFET HBT
☐ InGaP HBT	☐ SiGe HBT	☐ Si BJT	

RF MIGRO DEVICES®, REMD®, Optimum Technology, Matching®, Enabling Wireless Connectivity®, PowerStards, PourAntS® TOTAL RADIO® and UltimateBlue® are trademarks of RFMD. LLC. BLUETOOTH is a trade mark owner by Bulletonth Side, inc. ILS. A and ifferenged for use by the PBMD all other trade natures, trademarks and resistent interferences are references. 2012 IE RM from Devices inc.

RFPA1003

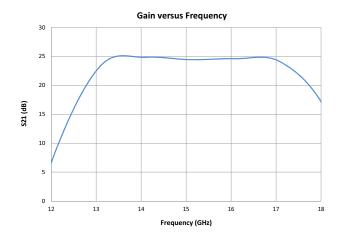
Absolute Maximum Ratings

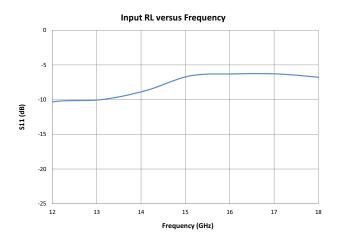
Parameter	Rating	Unit
V _{D1} , V _{D2} , V _{D3}	+7.7	V
V _G	0	V
Junction Temperature		°C
Continuous P_{DISS} (T = 85 °C) (derate 37 mW/ °C above T = 85 °C)		°C/W
Storage Temperature	-65 to +150	°C
Operating Temperature	-40 to +85	°C
ESD Sensitivity (HBM)		

Caution! ESD sensitive device.

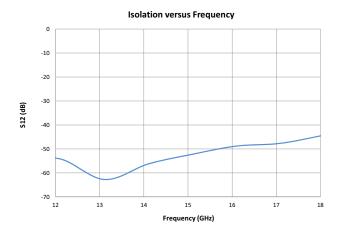
Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

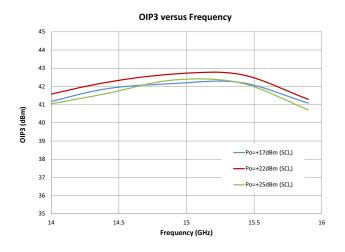

RFMD Green: RoHS compliant per EU Directive 2002/95/EC, halogen free per IEC 61249-2-21, < 1000 ppm each of antimony trioxide in polymeric materials and red phosphorus as a flame retardant, and <2% antimony in solder.

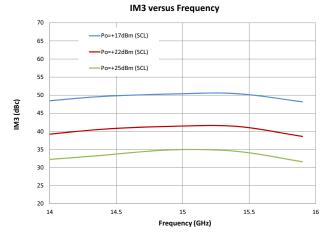

Parameter	;	Specification		11	.
	Min.	Тур.	Max.	Unit	Condition
Operational Frequency	14.4		15.4	GHz	
Positive Supply Voltage (V _{DD})		7.5		V	
Drain current (I _D)		1000		mA	
Small-signal Gain		25		dB	
Dynamic Range	12	15		dB	
P1dB		32.5		dBm	
OIP3		42.5		dBm	at P _{OUT} = 28dBm (2 tones total power) in 14.4GHz to 15.4GHz frequency range
IM3		50.0		dBc	at P _{OUT} = 20dBm (2 tones total power) in 14.4GHz to 15.4GHz frequency range
		40.0		dBc	at P _{OUT} = 25dBm (2 tones total power) in 14.4GHz to 15.4GHz frequency range
		35.0		dBc	at P _{OUT} = 28dBm (2 tones total power) in 14.4GHz to 15.4GHz frequency range
IM5		78		dBc	at P _{OUT} = 20dBm (2 tones total power) in 14.4GHz to 15.4GHz frequency range
		65		dBc	at P _{OUT} = 25dBm (2 tones total power) in 14.4GHz to 15.4GHz frequency range
Input Return Loss (RL _{IN})		7		dB	
Output Return Loss (RL _{OUT})		18		dB	
Noise Figure				dB	
ESD Sensitivity (HBM)				V	
ESD Sensitivity (MM)				V	
Moisture Sensitivity Level				V	

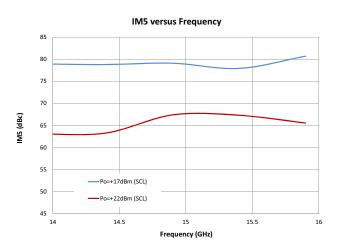


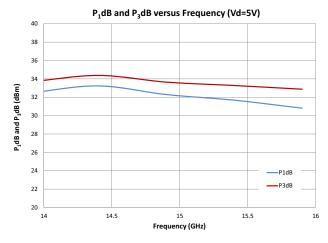

Small Signal Performance

$$V_{D1} = V_{D2} = V_{D3} = 7.5V$$
, $I_{D1} = 172$ mA, $I_{D2} = 180$ mA, $I_{D3} = 600$ mA

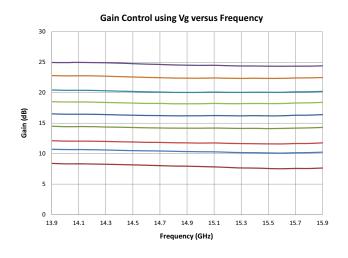


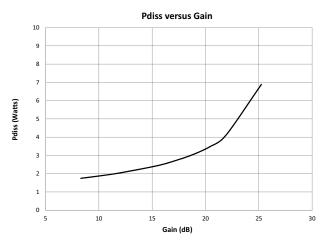

RFPA1003

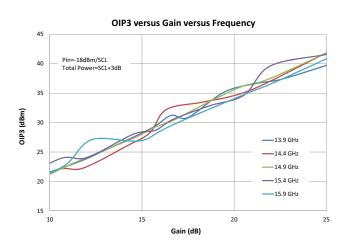


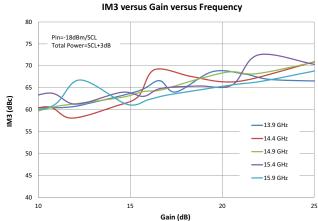

Typical Electrical Performance

 $V_{D1} = V_{D2} = V_{D3} = 7.5V$, $I_{D1} = 172$ mA, $I_{D2} = 180$ mA, $I_{D3} = 600$ mA



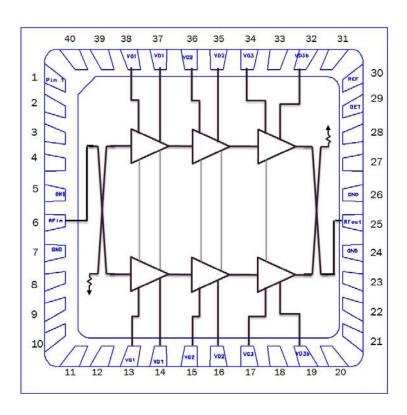





Typical Electrical Performance

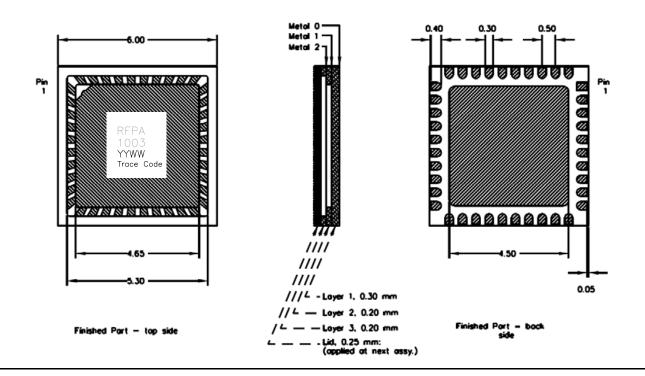
(continued)

RFPA1003

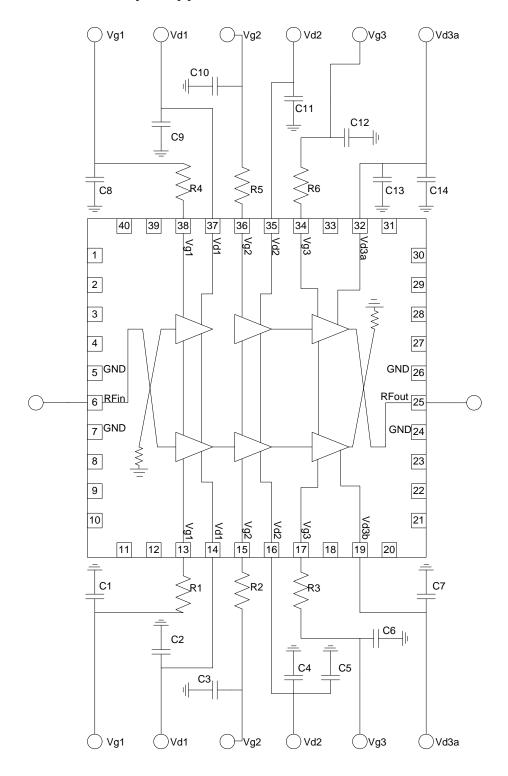


Pin Names and Descriptions

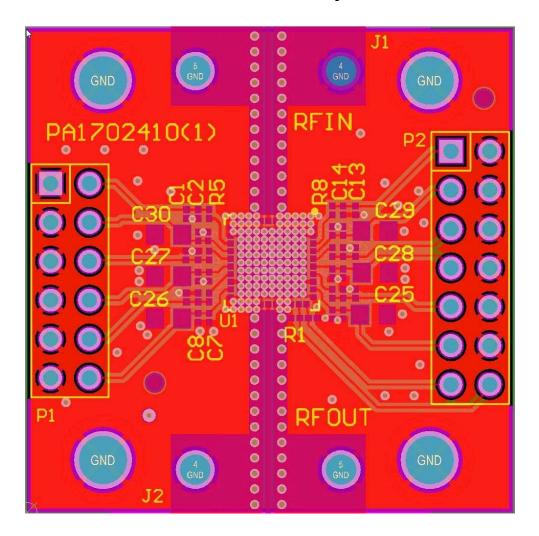
Pin	Name	Description
1	N/C	Not connected.
2	N/C	Not connected.
3	N/C	Not connected.
4	N/C	Not connected.
5	GND	Ground.
6	RFIN	RF input.
7	GND	Ground.
8	N/C	Not connected.
9	N/C	Not connected.
10	N/C	Not connected.
11	N/C	Not connected.
12	N/C	Not connected.
13	VG1	Gate bias 1.
14	VD1	Drain bias 1.
15	VG2	Gate bias 2.
16	VD2	Drain bias 2.
17	VG3	Gate bias 3.
18	N/C	Not connected.
19	VD3B	Drain bias 3.
20	N/C	Not connected.
21	N/C	Not connected.
22	N/C	Not connected.
23	N/C	Not connected.
24	GND	Ground.
25	RFOUT	RF output.
26	GND	Ground.
27	N/C	Not connected.
28	N/C	Not connected.
29	DET	Detector Out.
30	REF	Detector Reference.
31	N/C	Not connected.
32	VD3A	Drain bias 3.
33	N/C	Not connected.
34	VG3	Gate bias 3.
35	VD2	Drain bias 2.
36	VG2	Gate bias 2.
37	VD1	Drain bias 1.
38	VG1	Gate bias 1.
39	N/C	Not connected.
40	N/C	Not connected.



Pin Out


Package Drawing

QFN, 32-Pin, 6mm x 6mm x 0.95mm



Sample Application Circuit Schematic

Evaluation Board Layout

