

SG6518 LCD Power Supply Supervisor

Features

- Two Adjustable Voltage Sense Input Pins: VSV1 and VSV2
- Over-voltage Protection (OVP) for 5V, 12V, and two outputs: V1, V2
- Over-current Protection (OCP) for 5V, 12V, and two outputs: V1, V2
- Adjustable Voltage Control Sense Input of V1 and V2 (ADJ-V1, ADJ-V2)
- Open-drain Output for FPO Pin
- 13ms PSON Control Delay
- No Lockup During the Fast AC Power-on/off
- Wide Supply Voltage Range: 4V to 15V
- Programmable Over-temperature Protection (OTP)

Applications

LCD Power Supply

Description

SG6518 provides the over-voltage protection (OVP) for 5V, 12V, and outputs V1 and V2 as well as over-current protection (OVP) for 5V, 12V, and outputs V1 and V2. When the voltage of OTP pin decreases to 1.2V, the over-temperature protection (OTP) function is enabled. FPO is set to HIGH to turn off the PWM control IC. The voltage difference across the external current shunt is used for OCP functions. An external resistor can be used to adjust protection threshold.

The power supply is turned on after a 13ms delay time when the PSON signal is set from LOW to HIGH. To turn off the power supply, PSON signal is set from HIGH to LOW with the delay time 13ms.

Ordering Information

Part Number	Operating Temperature Range	Package	Packing Method
SG6518DZ	-40°C to +85°C	16-DIP	Rail
SG6518SZ	-40°C to +85°C	16-SOP	Reel & Tape

All packages are lead free per JEDEC: J-STD-020B standard.

Application Diagram

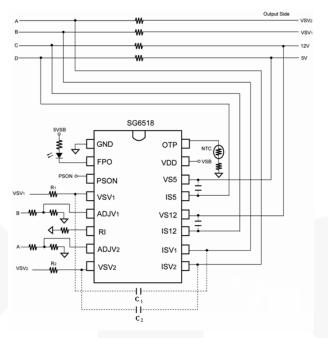


Figure 1. Typical Application

- 1. $R_1 = 200\Omega$ and $R_2 = 200\Omega$ are suggested. 2. C_1 and C_2 are suggested to be 100nF to 2.2uF.

Internal Block Diagram

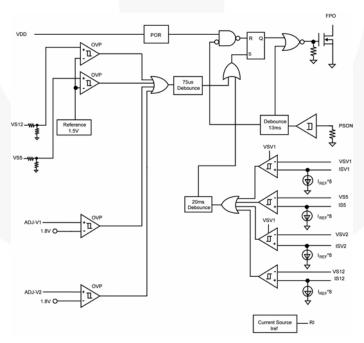


Figure 2. Function Block Diagram

Note:

3. The VSV1 pin is the power pin for the two OCP comparators.

Pin Configuration

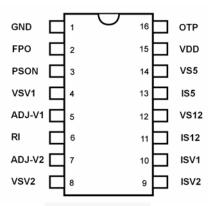


Figure 3. Pin Configuration

Pin Definitions

Pin#	Name	Description				
1	GND	Ground.				
2	FPO	Fault protection output. Output signal to control the primary PWM IC through an opto-coupler. When FPO is LOW, the PWM IC is enabled.				
3	PSON	Remote on/off logic input from CPU or main-board. The power supply is turned on/off after 13ms delay.				
4	VSV1	V1 voltage sense input. (4)				
5	ADJ-V1	V1 over-voltage control sense input.				
6	RI	Reference setting. One external resistor, R_i , connected between the RI and GND pins determines a reference current, $I_{REF} = 1.5 V/R_i$, for OCP programming.				
7	ADJ-V2	V2 over-voltage control sense input.				
8	VSV2	V2 voltage sense input.				
9	ISV2	/2 over-current protection sense input. In typical applications, this pin is connected to the positive end of a current shunt through one resistor. When the voltage on ISV2 is higher than hat of VSV2 by 6mV, OCP is enabled.				
10	ISV1	VSV1 over-current protection sense input. In typical applications, this pin is connected to the positive end of a current shunt through one resistor. When the voltage on ISV1 is higher than that of VSV1 by 6mV, OCP is enabled.				
11	IS12	12V over-current protection sense input. In typical applications, this pin is connected to the positive end of a current shunt through one resistor. When the voltage on IS12 is higher than that of VS12 by 6mV, OCP is enabled.				
12	VS12	12V over-voltage control sense input.				
13	IS5	5V over-current protection sense input. In typical applications, this pin is connected to the positive end of a current shunt through one resistor. When the voltage on IS5 is higher than tha of VS5 by 6mV, OCP is enabled.				
14	VS5	5V over-voltage control sense input.				
15	VDD	Supply voltage, 4V ~ 15V. For general applications, it is connected to 5V-standby for supply voltage.				
16	ОТР	For over-temperature protection. An external NTC thermistor is connected from this pin to ground. The impedance of the NTC decreases at high temperatures. Once the voltage of the OTP pin drops below a fixed limit of 1.2V, FPO is open-drain output.				

Note:

4. The VSV1 pin is the power pin for the two OCP comparators; it must be higher than VSV2.

Timing Diagram

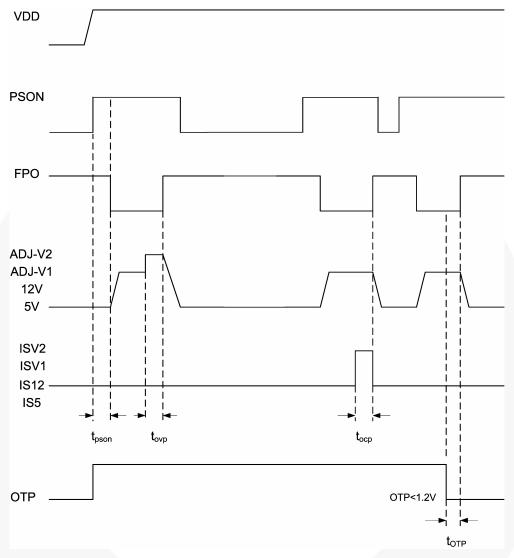


Figure 4. PSON On/Off and 5V, 12V, V1, V2, OVP, and OCP Functions

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. All voltage values, except differential voltages, are given with respect to GND pin. Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device.

Symbol		Parameter	Min.	Max.	Unit	
V_{DD}	DC Supply Voltage		16	V		
		ISV1, ISV2, VSV1, VSV2	-0.3	30.0	V	
Vı	Input Voltage	PSON, IS12,VS12	-0.3	15.0		
		ADJ-V1, ADJ-V2, IS5, VS5, OTP, RI	-0.3	7.0		
V _{OUT}	Output Voltage	-0.3	15.0	V		
P_D	Power Dissipation		400	mW		
TJ	Operating Free Jui	-40	+125	°C		
T _{STG}	Storage Temperate	-55	+150	°C		
TL	Lead Temperature	(Wave Soldering, 10 Seconds)		+260	°C	
ESD	Electrostatic Disch		2.5	kV		
ESD	Electrostatic Disch		200	V		

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
V_{DD}	DC Supply Voltage	4	15	V
T_A	Operating Ambient Temperature Range	-40	+85	°C

Electrical Characteristics

Unless otherwise noted, operating specifications are $V_{DD} = 5V,\, T_A \text{=+}25^{\circ}C$

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
VDD SECT	FION					
V_{DD}	DC Supply Voltage		4		15	V
I _{DD}	Supply Current			1.5		mA
t _R	Supply Voltage Rising Time		1			ms
V _{ST}	V _{DD} Start Threshold Voltage				4	V
Over-Volta	age and Over-Current Protection (O	/P, OCP)				
.,	Over-Voltage Protection VS5	5.7	6.1	6.5	.,	
V_{OVP}	Over-Voltage Protection VS12		13.2	13.8	14.4	V
I _{REF}	Ratio of Current Sense Sink Current to Current Sense Setting Pin (RI) Source Current	$R_{I} = 23K\Omega \sim 120K\Omega$	7.6	8.0	8.4	
V _{OFFSET}	OCP Comparator Input Offset Voltage		-7		7	mV
I _{LKG-FPO}	Leakage Current (FPO)	FPO = 5V			5	μA
V _{OL-FPO}	Low Level Output Voltage (FPO)	Isink 10mA			0.5	V
t _{OVP}	OVP Delay Time		33	75	110	μs
tocp	OCP Delay Time		12.5	20.0	27.5	ms
V_{RI}	RI Pin Voltage		1.455	1.50	1.545	V
t _{ST-OCP}	Start-up OCP Protection Delay Time	FPO = LOW	158	200	242	ms
ADJ Section	on					
V _{ADJNOR}	Normal Voltage of ADJ-V1 & ADJ-V2		1.455	1.50	1.545	V
V _{ADJOVP}	Over-Voltage Protection of ADJ-V1 & ADJ-V2		1.455	1.80	1.545	V
PSON Cor	ntrol					
RPSON	Input Pull-low Resistor		50	1	100	ΚΩ
V _{IH}	High-level Input Voltage		2			V
V _{IL}	Low-level Input Voltage		7		1	V
	Timing DCON to On 10#	PSON HIGH to FPO LOW	6	13	20	ms
t _{PSON}	Timing PSON to On/Off	PSON LOW to FPO HIGH	6	13	20	ms
Over-Tem	perature Protection (OTP)					
I _{OTP}	Ratio of OTP Source Current to Current Sense Setting Pin (RI) Source Current		5.82	6.00	6.18	
$V_{OTP\text{-}OFF}$	Threshold Voltage for OTP		1.164	1.200	1.236	V
t _{OTP}	Over-Temperature Debounce		225	325	425	μs

Typical Performance Characteristics

These characteristic graphs are normalized at $T_A = 25$ °C.

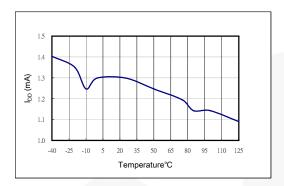


Figure 5. Supply Current

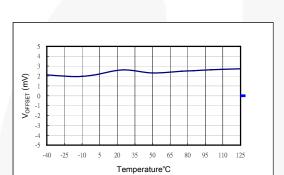


Figure 7. OCP Comparator Input Offset Voltage

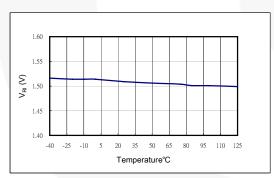


Figure 9. RI Pin Voltage

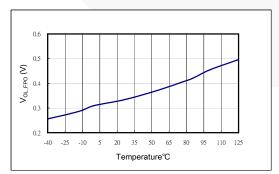


Figure 11. Low Level Output Voltage

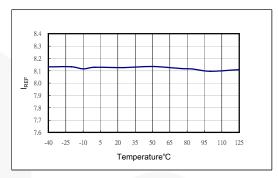


Figure 6. Ratio of Sense Sink Current Sense Setting
Pin (RI) Source Current

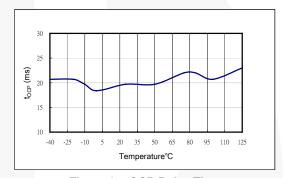


Figure 8. OCP Delay Time

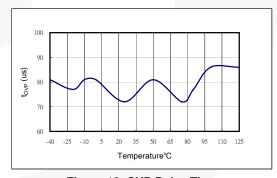


Figure 10. OVP Delay Time

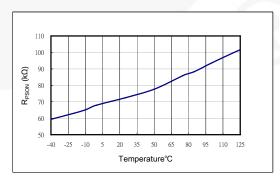
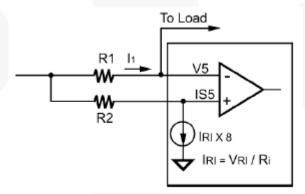


Figure 12. Input Pull-low Resistor

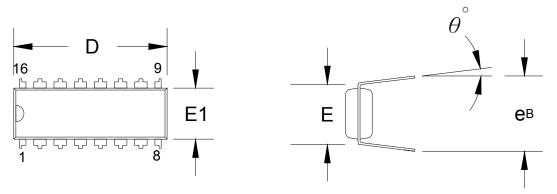
Applications Information (OCP)

The SG6518 provides over-current protection for the 5V, 12V, and two outputs: V1, V2. When an OCP condition occurs at any of the voltage rails, FPO opens. The internal OCP comparators have a very small offset voltage (± 6 mV). The sink currents of IS5, IS12, ISV1, and ISV2 are eight times the current at the RI pin. The current at the RI pin is V_{RI}/R_{I} . Here is an example demonstrating how to set the over-current protection.


If $I_1 \cdot R1 > (I_{R1} \cdot 8) \cdot R2$, OCP is active.

To select R2 Resistor:

If R1 = 5m Ω , R_i = 51k, OCP Protection Level is 5A, then R2 = (I₁ • R1)/(I_{R1} • 8)


= $(5A \cdot 5m\Omega) / \{(1.5V / 51K) \cdot 8\}$

 $= 106\Omega$

Figure 13. Over-Current Protection

Physical Dimensions

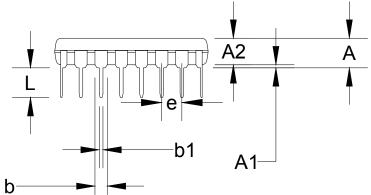


Figure 14. 16-Pin, Dual Inline Package (DIP)(D)

Dimensions

Symbol	Millimeter Inch					
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α			5.334			0.210
A1	0.381			0.015		
A2	3.175	3.302	3.429	0.125	0.130	0.135
b		1.524			0.060	
b1		0.457			0.018	
D	18.669	19.177	19.685	0.735	0.755	0.775
Е		7.620			0.300	
E1	6.121	6.299	6.477	0.241	0.248	0.255
е		2.540			0.100	// 100
L	2.921	3.302	3.810	0.115	0.130	0.150
e _B	8.509	9.017	9.525	0.335	0.355	0.375
θ °	0°	7°	15°	0°	7°	15°

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/

Physical Dimensions (Continued)

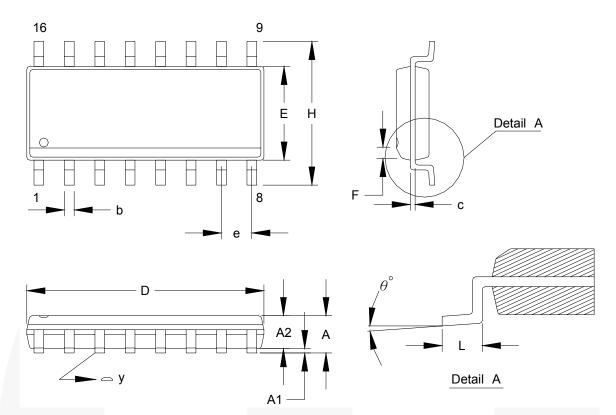


Figure 15. 16-Pin, Small-Outline Package (SOP)(S)

Dimensions

Compleal	Millimeter	Millimeter			Inch			
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.		
Α	1.346		1.753	0.053	/	0.069		
A1	0.101		0.254	0.004		0.010		
A2	1.244		1.499	0.049	/	0.059		
b		0.406			0.016			
С		0.203			0.008			
D	9.804		10.008	0.386		0.394		
Е	3.810		3.988	0.150		0.157		
е		1.270			0.050			
Н	5.791		6.198	0.228		0.244		
L	0.406		1.270	0.016		0.050		
F		0.381X45°			0.015X45°			
у			0.101			0.004		
θ °	0°		8°	0°		8°		

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

ACEx[®] Build it Now™ CorePLUS™ CROSSVOLT™ CTL TM

Current Transfer Logic™ EcoSPARK® EZSWITCH™ *

E7

Fairchild[®] Fairchild Semiconductor®

FACT Quiet Series™ FACT® FAST® FastvCore™

FPS™ FRFET® Global Power Resources Green FPS™

Green FPS™e-Series™ **GTO™** i-Lo™ IntelliMAX™ ISOPLANAR™ MICROCOUPLER™

MegaBuck™ MicroFET™ MicroPak™ MillerDrive™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR® PDP-SPM™ Power220® Power247® POWEREDGE® Power-SPM™ PowerTrench®

Programmable Active Droop™ OFFI QSTM

QT Optoelectronics™ Quiet Series™ RapidConfigure™ SMART START™ SPM®

STEALTH** SuperFET™ SuperSOT™3 SuperSOT™6 SuperSOT™-8 SvncFET™ SYSTEM ® The Power Franchise®

p wer TinyBoost™ TinyBuck™ TinyLogic[®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ μSerDes™ UHC[®]

Ultra FRFET™ UniFET™ VCX^{TM}

* EZSWITCH™ and FlashWriter® are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FlashWriter®*

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- 1. Life support devices or systems are devices or systems 2. A critical component in any component of a life support, which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.

Rev. 132