LT5521

feATURES

- Wideband Output Frequency Range to 3.7 GHz
- +24.2dBm IIP3 at 1.95GHz RF Output
- Low LO Leakage: -42dBm
- Integrated LO Buffer: Low LO Drive Level
- Single-Ended LO Drive
- Wide Single Supply Range: 3.15 V to 5.25 V
- Double-Balanced Active Mixer
- Shutdown Function
- 16-Lead (4mm $\times 4 \mathrm{~mm}$) QFN Package

APPLICATIONS

- Cellular, W-CDMA, PHS and UMTS Infrastructure
- Cable Downlink Infrastructure
- Wireless Infrastructure
- Fixed Wireless Access Equipment
- High Linearity Mixer Applications

DESCRIPTION

The $\mathrm{LT}^{\circledR} 5521$ is a very high linearity mixer optimized for Iow distortion and low LO leakage applications. The chip includes a high speed LO buffer with single-ended input and a double-balanced active mixer. The LT5521 requires only -5dBm LO input power to achieve excellent distortion and noise performance, while reducing external drive circuit requirements. The LO buffer is internally 50Ω matched for wideband operation.

With a 250 MHz input, a 1.7 GHz LO and a 1.95GHz output frequency, the mixer has a typical IIP3 of +24.2 dBm , -0.5 dB conversion gain and a 12.5 dB noise figure.

The LT5521 offers exceptional L0-RF isolation, greatly reducing the need for output filtering to meet LO suppression requirements.

The device is designed to work over a supply voltage range from 3.15 V to 5.25 V .
$\overline{\mathbf{\Sigma Y}}$, LTC and LT are registered trademarks of Linear Technology Corporation.

TYPICAL APPLICATION

Fundamental, 3rd Order Intermodulation Distortion vs Input Power

ABSOLUTE MAXIMUM RATINGS
(Note 1)
Power Supply Voltage .. 5.5V
Enable Voltage -0.2 V to $\mathrm{V}_{\mathrm{CC}}+0.2 \mathrm{~V}$
LO Input Power ... +10 dBm
LO Input DC Voltage OV to 1.5V
IF Input Power .. +10dBm
Difference Voltage Across Output Pins $\pm 1.5 \mathrm{~V}$
Maximum Pin 2 or Pin 3 Current 34 mA
Operating Ambient Temperature Range .. $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Maximum Junction Temperature $125^{\circ} \mathrm{C}$PACKAGE/ORDER INFORMATION

Consult LTC Marketing for parts specified with wider operating temperature ranges.

DC ELECTRICAL CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{EN}=2.9 \mathrm{v}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
Test circuit shown in Figure 1. (Note 2)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage		3.15	5.25	V	
Supply Current		82	98	mA	
Shutdown Current	EN $=0.2 \mathrm{~V}$	80	100	$\mu \mathrm{~A}$	

Enable (EN) Low = Off, High = On

Enable Mode	EN = High	2.9	
Disable Mode	$\mathrm{EN}=$ Low	V	
Enable Current	$\mathrm{EN}=5 \mathrm{~V}$	0.2	V
Shutdown Enable Current	$\mathrm{EN}=0.2 \mathrm{~V}$	0.1	$\mu \mathrm{~A}$
Turn-On Time (Note 3)		200	$\mu \mathrm{~A}$
Turn-Off Time (Note 4)		200	ns
LO Voltage (Pin 15)	Internally Biased	0.96	ns
Input Voltage (Pins 2, 3)	$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}$, Internally Biased	V	
	V CC $=3.3 \mathrm{~V}$, Internally Biased	2.20	V

AC ELECTRICAL CHARACTERISTICS $V_{C C}=5 V, E N=2.9 v, T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted.
Test circuit shown in Figure 1. (Note 2)

PARAMETER	CONDITIONS	MIN	TYP
LO Frequency Range		10 to 4000	MAX
UNITS			
Input Frequency Range		10 to 3000	MHz
Output Frequency Range		10 to 3700	MHz
LO Input Power		-5	1
LO Return Loss	$\mathrm{Z}_{0}=50 \Omega, \mathrm{f}_{\mathrm{LO}}=1700 \mathrm{MHz}$	dBm	
Output Return Loss	Requires Matching	12	dB
Input Return Loss (Pins 2, 3)	Requires Matching	12	dB

AC ELECTRICAL CHARACTERISTICS $\mathrm{v}_{\mathrm{Cc}}=5 \mathrm{~V}, \mathrm{EN}=2.9 \mathrm{~V}, \mathrm{f}_{\mathrm{IF}}=250 \mathrm{MHz}, \mathrm{P}_{\mathrm{IF}}=-7 \mathrm{dBm}, \mathrm{f}_{\mathrm{L} 0}=1700 \mathrm{MHz}$,
$P_{L 0}=-5 d B m, f_{\text {RF }}=1950 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Test circuit shown in Figure 1 .

PARAMETER	CONDITIONS	MIN	TYP
Conversion Gain		-0.5	MAX
UNITS			
Input P1dB		-0.009	dB
Single-Side Band Noise Figure		+10	$\mathrm{~dB} /{ }^{\circ} \mathrm{C}$
IIP3		12.5	dBm
IIP2 (Note 6)	Two Tones, $\Delta \mathrm{f}_{\mathrm{IF}}=5 \mathrm{MHz}, \mathrm{P}_{\mathrm{IF}}=-7 \mathrm{dBm} /$ Tone	+24.2	dB
LO-RF Leakage	Two Tones, $\Delta \mathrm{f}_{\mathrm{IF}}=5 \mathrm{MHz}, \mathrm{P}_{\mathrm{IF}}=-7 \mathrm{dBm} /$ Tone, $\mathrm{f}_{\text {LO }}+\mathrm{f}_{\mathrm{IF} 1}+\mathrm{f}_{\mathrm{IF} 2}$	+49	dBm
LO-IF Leakage			dBm

$V_{C C}=5 \mathrm{~V}, E N=2.9 \mathrm{~V}, \mathrm{f}_{\mathrm{IF}}=44 \mathrm{MHz}, \mathrm{P}_{\mathrm{IF}}=-7 \mathrm{dBm}, \mathrm{f}_{\mathrm{LO}}=1001 \mathrm{MHz}, \mathrm{P}_{\mathrm{LO}}=-5 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=1045 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

PARAMETER	CONDITIONS	MIN	TYP
Conversion Gain		-0.5	MAX
UNITS			
Conversion Gain Variation vs Temperature		-0.012	dB
Input P1dB		+10	$\mathrm{~dB} /{ }^{\circ} \mathrm{C}$
Single-Side Band Noise Figure		12.8	dBm
IP3	Two Tones, $\Delta f_{\mathrm{IF}}=5 \mathrm{MHz}, \mathrm{P}_{\mathrm{IF}}=-7 \mathrm{dBm} /$ Tone	+24.5	dB
IIP2 (Note 6)	Two Tones, $\Delta f_{I F}=5 \mathrm{MHz}, \mathrm{P}_{\mathrm{IF}}=-7 \mathrm{dBm} /$ Tone, $\mathrm{f}_{\text {L0 }}+\mathrm{f}_{\mathrm{IF} 1}+\mathrm{f}_{\mathrm{IF} 2}$	+49	dBm
LO-RF Leakage		-38	dBm
LO-IF Leakage		-59	dBm

$V_{\text {CC }}=3.3 \mathrm{~V}, \mathrm{EN}=2.9 \mathrm{~V}, \mathrm{f}_{\mathrm{IF}}=250 \mathrm{MHz}, \mathrm{P}_{\mathrm{IF}}=-7 \mathrm{dBm}, \mathrm{f}_{\mathrm{L} O}=1700 \mathrm{MHz}, \mathrm{P}_{\mathrm{LO}}=-5 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=1950 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Note 5)

PARAMETER	CONDITIONS	MIN	TYP
Conversion Gain		MAX	UNITS
Conversion Gain Variation vs Temperature		-0.5	dB
Input P1dB		-0.013	$\mathrm{~dB} /{ }^{\circ} \mathrm{C}$
Single-Side Band Noise Figure		+11	dBm
IIP3	Two Tones, $\Delta \mathrm{f}_{\mathrm{IF}}=5 \mathrm{MHz}, \mathrm{P}_{\mathrm{IF}}=-7 \mathrm{dBm} /$ Tone	13.5	dB
IIP2 (Note 6)	Two Tones, $\Delta \mathrm{f}_{\mathrm{IF}}=5 \mathrm{MHz}, \mathrm{P}_{\mathrm{IF}}=-7 \mathrm{dBm} /$ Tone, $\mathrm{f}_{\mathrm{LO}}+\mathrm{f}_{\mathrm{IF} 1}+\mathrm{f}_{\mathrm{IF} 2}$	+25.8	dBm
LO-RF Leakage		-50	dBm
LO-IF Leakage		-36	dBm

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: Specifications over the $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ temperature range are assured by design, characterization and correlation with statistical process controls.
Note 3: Interval from the rising edge of the Enable input to the time when the RF output is within 1 dB of its steady-state output.

Note 4: Interval from the falling edge of the Enable signal to a 20 dB drop in the RF output power.
Note 5: R1 = R7 = 22.6 $\Omega, \mathrm{Z1}=\mathrm{Z7}=100 \mathrm{nH}$.
Note 6: Second harmonic distortion measured at $f_{L O}+f_{I F 1}+f_{I F 2}$.

TYPICAL DC PERFORMANCE CHARACTERISTICS Test tircuit shown in Figure 1.

TYPICAL AC PERFORMANCE CHARACTERISTICS

$f_{L 0}=1700 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=250 \mathrm{MHz}, \mathrm{f}_{\mathrm{RF}}=1950 \mathrm{MHz}, \mathrm{P}_{\mathrm{L} 0}=-5 \mathrm{dBm}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, E N=2.9 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted. Test circuit shown in Figure 1 is tuned for 1.95 GHz output frequency and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

TYPICAL AC PGRFORMANCE CHARACTERISTICS $\mathrm{t}_{\mathrm{L} 0}=1700 \mathrm{mHz}, \mathrm{t}_{\mathrm{f}}=250 \mathrm{MHz}, \mathrm{t}_{\mathrm{fF}}=1950 \mathrm{MHz}$, $P_{L 0}=-5 \mathrm{dBm}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, E N=2.9 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted. Test circuit shown in Figure 1 is tuned for 1.95 GHz output frequency and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

Low Side LO (LS) and High Side LO (HS) Comparison: Conversion Gain and IIP3 vs RF Frequency

Low Side LO (LS) and High Side LO (HS) Comparison: Noise Figure vs RF Frequency

TYPICAL AC PGRFORMAOC CHARACTERISTICS $t_{L_{0}}=1001 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=44 \mathrm{MHz}, \mathrm{f}_{\text {PR }}=1005 \mathrm{MHz}$, $P_{L 0}=-5 \mathrm{dBm}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{EN}=2.9 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted. Test circuit shown in Figure 1 is tuned for 1.045 GHz output frequency.

Fundamental, 2nd and 3rd Order Intermodulation Distortion
vs Input Power

5521 G15

LO-RF Leakage vs LO Frequency

Conversion Gain vs Input Power

5521 G16
Conversion Gain, IIP3 and Noise
Figure vs Supply Voltage

Conversion Gain and IIP3 vs RF Frequency, Fixed IF

5521 G17
Conversion Gain and IIP3 vs LO Power

LO-RF Leakage vs LO Power

LO-RF Leakage vs Supply Voltage

 $P_{L 0}=-5 \mathrm{dBm}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{EN}=2.9 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted. Test circuit shown in Figure 1 is tuned for 1.045 GHz output frequency.

5521 G23

Low Side LO (LS) and High Side LO (HS) Comparison: Conversion Gain and IIP3 vs RF Frequency

Low Side LO (LS) and High Side LO (HS) Comparison: Noise Figure vs RF Frequency

5521 G34
$\mathrm{f}_{\mathrm{LO}}=1.7 \mathrm{GHz}, \mathrm{f}_{\mathrm{IF}}=250 \mathrm{MHz}, \mathrm{f}_{\mathrm{RF}}=1.95 \mathrm{GHz}, \mathrm{P}_{\mathrm{LO}}=-5 \mathrm{dBm}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{EN}=2.9 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted. Test circuit shown in Figure 1 is tuned for 1.95 GHz output frequency and $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$.

5521 G25

Conversion Gain vs Input Power

Conversion Gain and IIP3 vs RF Frequency

 $=-5 \mathrm{dBm}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{EN}=2.9 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted. Test circuit shown in Figure 1 is tuned for 1.95 GHz output frequency and $V_{C C}=3.3 \mathrm{~V}$.

PIn functions

GND (Pins 1, 4, 10, 11, 13, 14, 16): Ground. These pins are internally connected to the Exposed Pad for improved isolation. They should be connected to RF ground on the printed circuit board, and are not intended to replace the primary grounding through the backside of the package.
$\mathbf{I N}^{+}$, $\mathbf{I N}^{-}$(Pins 2, 3): Differential Input Pins. Each pin requires a resistive DC path to ground. See Applications Information for choosing the resistor value. External matching is required.

EN (Pin 5): Enable Input Pin. The enable voltage should be at least 2.9 V to turn the chip on and less than 0.2 V to turn the chip off.

VCC (Pins 6, 7, 8): Power Supply Pins. Total current draw for these three pins is 40 mA .
OUT+ ${ }^{+}$OUT${ }^{-}$(Pins 12, 9): RFOutput Pins. These pins must have a DC connection to the supply voltage (see Applications Information). These pins draw 20 mA each. External matching is required.
LO (Pin 15): Local Oscillator Input. This input is internally DC biased to 0.96 V . Input signal must be AC coupled.

Exposed Pad (Pin 17): Circuit Ground Return for the Entire IC. For best performance, this pin must be soldered to the printed circuit board.

BLOCK DIAGRAM

TEST CIRCUITS

Figure 1. Demonstration Board Schematic
Table 1. Demonstration Board Bill of Materials ${ }^{1,2}$

REF	$\begin{gathered} \mathrm{f}_{\mathrm{IF}}=250 \mathrm{MHz}, \mathrm{f}_{\mathrm{RF}}=1.95 \mathrm{GHz} \\ \mathrm{f}_{\mathrm{LO}}=1.7 \mathrm{GHz}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \end{gathered}$	$\begin{gathered} \mathrm{f}_{\mathrm{IF}}=44 \mathrm{MHz}, \mathrm{f}_{\mathrm{RF}}=1.045 \mathrm{GHz} \\ \mathrm{f}_{\mathrm{LO}}=1.001 \mathrm{GHz}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \end{gathered}$	$\begin{gathered} \mathrm{f}_{\mathrm{IF}}=250 \mathrm{MHz}, \mathrm{f}_{\mathrm{RF}}=1.95 \mathrm{GHz} \\ \mathrm{f}_{\mathrm{LO}}=1.7 \mathrm{Gzz}, \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V} \end{gathered}$
R1, R7	110 ${ }^{\text {, }} 1 \%$	110 2 , 1\%	22.6 , 1\%
Z14	10pF	120 nH	10pF
Z3	0Ω	150pF	0Ω
L1, L2	2.7 nH	10nH	2.7 nH
T1	M/A-COM MABACT0010 ${ }^{3}$	M/A-COM MABACT0010 ${ }^{3}$	M/A-COM MABACT0010 ${ }^{3}$
T2	M/A-COM ETC1.6-4-2-3	M/A-COM ETC1.6-4-2-3	M/A-COM ETC1.6-4-2-3
C1, C13	6.8pF	27pF	6.8pF
C3	82pF	3.9pF	82pF
C12	82pF	1 nF	82pF
C2, C4, C6	1 nF	1nF	1 nF
C11	$1 \mu \mathrm{~F}$	$1 \mu \mathrm{~F}$	$1 \mu \mathrm{~F}$
Z1, 27	0Ω	0Ω	100 nH
THIS COMPONENT CAN BE REPLACED BY PCB TRACE ON FINAL APPLICATION			
R8	10k	10k	10k

Note 1: Tabulated values are used for characterization measurements.
Note 2: Components shown on the schematic are included for consistency with the demo board.
If no value is shown for the component, the site is unpopulated.
Note 3: T1 also M/A-COM ETC1-1-13 and Sprague Goodman GLSW4M202. These alternative transformers have been measured and have similar performance.

APPLICATIONS Information

The LT5521 is a high linearity double-balanced active mixer. The chip consists of a double-balanced mixer core, a high performance LO buffer and associated bias and enable circuitry. The chip is designed to operate with a supply voltage ranging from 3.15 V to 5.25 V .
Table 2. Port Impedance

FREQUENCY (MHz)	DIFFERENTIAL INPUT	DIFFERENTIAL OUTPUT	SINGLE-ENDED LO
50	$19.8+\mathrm{j} 0.7$	$282.2-\mathrm{j} 8.4$	$49.9+\mathrm{j} 0.1$
100	$20.1+\mathrm{j} 2.0$	$282.3-\mathrm{j} 20.8$	$49.8+\mathrm{j} 0.3$
300	$18.2+\mathrm{j} 5.3$	$262.3-\mathrm{j} 55.1$	$49.2+\mathrm{j} 0.9$
600	$15.2+\mathrm{j} 16.8$	$231.4-\mathrm{j} 67.0$	$47.7+\mathrm{j} 2.0$
1000	$14.5+\mathrm{j} 28.1$	$215.0-\mathrm{j} 124.5$	$45.3+\mathrm{j} 2.8$
1500	$20.5+\mathrm{j} 42.3$	$109.5-\mathrm{j} 158.0$	$43.3+\mathrm{j} 2.8$
2000	$48.2+\mathrm{j} 26.8$	$52.9-\mathrm{j} 92.1$	$43.0+\mathrm{j} 3.3$
2300	$18.2+\mathrm{j} 29.4$	$61.6-\mathrm{j} 74.2$	$43.4+\mathrm{j} 4.6$
3200	$22.4+\mathrm{j} 125.1$	$14.2-\mathrm{j} 27.5$	$44.6+\mathrm{j} 14.0$
3500		$27.9-\mathrm{j} 4.4$	$42.4+\mathrm{j} 17.9$
4000		$42.8-\mathrm{j} 16.0$	$38.6+\mathrm{j} 22.8$

Signal Input Interface

Figure 2 shows the signal inputs of the LT5521. The signal input pins are connected to the common emitter nodes of the mixer quad differential pairs. The real part of the differential $\mathrm{IN}^{+} / \mathrm{IN}^{-}$impedance is 20Ω. The mixer core current is set by external resistors R1 and R7. Setting their values at 110Ω, the nominal DC voltage at the inputs is 2.2 V with $\mathrm{V}_{C C}=5 \mathrm{~V}$. Figure 3 shows the input return loss for a matched input at 250 MHz .

Figure 2. Signal Input with External Matching

5521 F03
Figure 3. IF Input Return Loss
For input frequencies above 100 MHz , a broadband impedance matching tranformer with a $1: 1$ impedance ratio is recommended. Table 3 provides the component values necessary to match various IF frequencies using the M/ACOM CT0010 transformer (T1, Figure 1).
Table 3. Component Values for Input Matching Using the M/A-COM CT0010

IF	C2	Z14	Z3
44 MHz	1000 pF	120 nH	150 pF
95 MHz	820 pF	33 pF	27 nH
120 MHz	1000 pF	27 pF	18 nH
150 MHz	330 pF	22 pF	10 nH
170 MHz	330 pF	18 pF	6.8 nH
250 MHz	82 pF	10 pF	0Ω
300 MHz	15 pF	3.9 pF	0Ω
435 MHz	8.2 pF	0.5 pF	0Ω
520 MHz	6.8 pF	Unused	0Ω

Below 100MHz, the Mini-Circuits TCM2-1T or the Pulse CX2045 are better choices for a wider input match. This configuration is shown in Figure 4. The series 1 nF capacitors maintain differential symmetry while providing DC isolation between the inputs. This helps to improve LO suppression.

Shunt capacitor C13 (Figure 2) is an optional capacitor across the input pins that significantly improves LO suppression. Although this capacitor is optional, it is important to regulate LO suppression, mitigating part-to-part variation. This capacitor should be optimized depending

APPLICATIONS InFORMATION

Figure 4. Low Frequency Signal Input
on the IF input frequency and the LO frequency. Smaller C13 values have reduced impact on the LO output suppression; larger values will degrade the conversion gain.

A single-ended 50Ω source can also be matched to the differential signal inputs of the LT5521 without an input transformer. Figure 5 shows an example topology for a discrete balun, and Table 4 lists component values for several frequencies. The discrete input match is intrinsically narrowband. LO suppression to the output is degraded and noise figure degrades by 4 dB for input frequencies greater than 200MHz. Noise figure degradation is worse at lower input frequencies.

Figure 5. Alternative Transformerless Input Circuit Using Low Cost Discrete Components

Table 4. Component Values for Discrete Bridge Balun Signal Input Matching

IF (MHz)	C14, C16 (pF)	L3, L4 (nH)
220	22	22
250	18	18
640	4.7	4.7

Operation at Reduced Supply Voltage

External resistors R1 and R7 (Figure 2) set the current through the mixer core. For best distortion performance, these resistors should be chosen to maintain a total of 40 mA through the mixer core (20 mA per side). At 5 V supply, R1 and R7 should be 110Ω. Table 5 shows recommended values for R1 and R7 at various supply voltages. Caution: Using values below the recommended resistance can adversely affect operation or damage the part.

Table 5. Minimum External Resistor Values vs Supply Voltage

$\mathbf{V}_{\text {CC }}(\mathbf{V})$	R1, R7 (Ω)
5	110
4.5	82.5
4	54.9
3.5	38.3
3.3	23.2

Excessive mismatch between the external resistors R1 and R7 will degrade performance, particularly LO suppression. Resistors with 1% mismatch are recommended for optimum performance.

Figure 2 shows RF chokes in series with R1 and R7. These inductors are optional. In general, the chokes improve the conversion gain and noise figure by 2 dB at 3.3 V (i.e., at the minimum values of R1 and R7). The DC resistance variation of the RF chokes must be considered in the 1% source resistance mismatch suggested for maintaining LO suppression performance.

Figure 6 indicates the typical performance of the LT5521 as the external source resistance (R1, R7) is varied while keeping the supply current constant. Figure 6 data was taken without the benefit of input chokes, and shows the gradual gain degradation for smaller values of the input resistors R1 and R7. Figure 7 shows the typical behavior when the supply voltage is fixed and the core current is varied by adjusting values of the external resistors R1 and R7. Decreasing the core current decreases the power consumption and improves noise figure but degrades distortion performance. Figure 8 demonstrates the impact of the RF chokes in series with the source resistance at 3.3 V . There is a 2 dB improvement in conversion gain and noise figure and a corresponding decrease in IIP3.

APPLICATIONS InFORMATION

5521 F06
Figure 6. IIP3, G_{C} and Noise Figure vs External Resistance, Constant Core Current (Variable Supply Voltage)

Figure 7. IIP3, G_{c} and Noise Figure vs Core Current, Constant Supply Voltage

Figure 8. Comparison of 3.3V Performance With and Without Input RF Choke

The user can tailor the biasing of the LT5521 to meet individual system requirements. It is recommended to choose a source resistance as large as possible to minimize sensitivity to power supply variation.

Output Interface

ADC connection to $V_{C C}$ must be provided on the $P C B$ to the output pins. These pins will draw approximately 20 mA each from the power supply. On-chip, there is a nominal 300Ω differential resistance between the output pins. Figure 9 shows a typical matching circuit using an external balun to provide differential to single-ended conversion.

LO suppression and 2xLO suppression are influenced by the symmetry of the external output matching circuitry. PCB design must maintain the trace layout symmetry of the output pins as much as possible to minimize these signals.
The M/A-COM ETC1.6-4-2-3 4:1 transformer (T2, Figure 9) is suitable for applications with output frequencies between 500 MHz and 2700 MHz . Output matching at various frequencies is achieved by adding inductors in series with the output (L1, L2) and DC blocking capacitor C3, as shown in Figure 9. Table 6 specifies center frequency and bandwidth of the output match for different matching configurations. Figure 10 shows the typical output return loss vs frequency for 1 GHz and 2 GHz applications. Capacitor C12 provides a solid AC ground at the RF output frequency.

Figure 9. Simplified Output Circuit with External Matching Components

APPLICATIONS InFORMATION
Table 6. Matching Values Using M/A-COM ETC1.6-4-2-3 Output Transformer

$\mathbf{f}_{\text {OUT }}$	$\mathbf{L 1}, \mathbf{L 2}$	$\mathbf{C 3}$	$\mathbf{C 1 2}$	$\Delta \mathbf{f}(\mathbf{1 0 d B} \mathbf{R L})$
2.4 GHz	0 nH	82 pF	82 pF	450 MHz
2.2 GHz	1 nH	82 pF	82 pF	430 MHz
2.0 GHz	2.7 nH	82 pF	82 pF	400 MHz
1.7 GHz	4.7 nH	82 pF	82 pF	400 MHz
1.3 GHz	10 nH	82 pF	82 pF	400 MHz
1.0 GHz	10 nH	3.9 pF	1 nF	500 MHz

5521 F10
Figure 10. Output Return Loss vs Frequency
For applications with LO and output frequencies below 1 GHz , the M/A-COM MABAES0054 is recommended for the output component T 2 . This transformer maintains better low frequency output symmetry. Table 7 lists components necessary for a 750 MHz output match using the M/A-COM MABAESOO54.

Table 7. Matching Values Using M/A-COM MABAESOO54
Output Transformer

$\mathbf{f}_{\text {OUT }}$	$\mathbf{L 1}, \mathbf{L 2}$	$\mathbf{C 3}$	$\mathbf{C 1 2}$	$\Delta \mathbf{f}$ (10dB RL)
750 MHz	33 nH	82 pF	1 nF	500 MHz

Hybrid baluns provide a low cost alternative for differential to single-ended conversion. The critical performance parameters of conversion gain, IIP3, noise figure and LO suppression are largely unaffected by these transformers. However, their limited bandwidth and reduced symmetry outside the frequency of operation degrades the suppression of higher order LO harmonics, particularly 2xLO. Murata LBD21 series hybrid balun transformers, for example, can be used for output frequencies as low as 840 MHz and as high as 2.4 GHz .

Johanson Technology supplies the 3700BL15B100S hybrid balun for use between 3.4 GHz and 4 GHz . With additional matching, this transformer can be used for applications between3.3GHzand 3.7GHz. Example LT5521 performance is shown in Figure 11.

Figure 11. LT5521 Performance for an Application Tuned to 3.5 GHz with Low Side (LS) and High Side (HS) LO Injection

LO Interface

The LO input pin is internally matched to 50Ω. It has an internal DC bias of 960 mV . External AC coupling is required. Figure 12 shows a simplified schematic of the LO input. Overdriving the LO input will dramatically reduce the performance of the mixer. The LO input power should not exceed +1 dBm for normal operation. Select C1 (Figure 12) only large enough to achieve the desired LO input return loss. This reduces external Iow frequency signal amplification through the LO buffer.

For applications with LO frequency in the range of 2.1 GHz to 2.4 GHz , the LT5521 achieves improved distortion and

Figure 12. Simplified LO Input Circuit

5521 F13
Figure 13. LO Port Return Loss
noise performance with slightly reduced current through the mixer core. Accordingly, in a 5V application operating within this LO frequency range, the recommended source resistor value (R 1 and R7) is increased to 121Ω.

Enable Interface

Figure 14 shows a simplified schematic of the EN pin interface. The voltage necessary to turn on the LT5521 is 2.9 V . To disable the chip, the enable voltage must be below 0.2 V . If the EN pin is not connected, the chip is disabled. It is not recommended, however, that any pins be left floating for normal operation.
It is important that the voltage at the EN pin never exceed $V_{C C}$, the power supply voltage, by more than 0.2 V . If this should occur, the supply current could be sourced through the EN pin ESD protection diodes, potentially damaging the IC. The resistor R8 (Figure 1) in series with the EN pin on the demo board is populated with a $10 \mathrm{k} \Omega$ resistor to protect the EN pin to avoid inadvertant damage to the IC. For timing measurements, this resistor is replaced with a

Figure 14. Enable Input Circuit
0Ω resistor. If the shutdown function is not required, then the EN pin should be wired directly to the $V_{C C}$ power supply on the PCB.

Supply Decoupling

The power supply decoupling shown in the schematic of Figure 1 is recommended to minimize spurious signal coupling into the output through the power supply.

ACPR Performance

Because of its high linearity and low noise, the LT5521 offers outstanding ACPR performance in a variety of applications. For example, Figures 15 and 16 show ACPR and Alternate Channel measurements for single channel and 4-channel 64 DPCH W-CDMA signals at 1.95 GHz output frequency.

5521 F15
Figure 15. Single Channel W-CDMA ACPR and 30 MHz Offset Noise Performance

1635624
Figure 16. 4-Channel W-CDMA ACPR, AltCPR and 30MHz Offset Noise Floor

APPLICATIONS INFORMATION

Figure 17. Top View of Demo Board

PACKAGE DESCRIPTION

UF Package
16-Lead Plastic QFN (4mm $\times 4 \mathrm{~mm}$)
(Reference LTC DWG \# 05-08-1692)

RELATGD PARTS

PART NUMBER	DESCRIPTION	COMMENTS
Infrastructure		
LT5511	High Linearity Upconverting Mixer	RF Output to 3GHz, 17dBm IIP3, Integrated LO Buffer
LT5512	DC-3GHz High Signal Level Downconverting Mixer	DC to 3GHz, 21dBm IIP3, Integrated LO Buffer
LT5514	Ultralow Distortion, Wideband Digitally Controlled Gain Amplifier/ADC Driver	BW $=850 \mathrm{MHz}, \mathrm{OIP} 3=47 \mathrm{dBm}$ at $100 \mathrm{MHz}, 22.5 \mathrm{~dB}$ Gain Control Range
$\underline{\text { LT5515 }}$	1.5 GHz to 2.5GHz Direct Conversion Quadrature Demodulator	20dBm IIP3, Integrated LO Quadrature Generator
LT5516	0.8 GHz to 1.5GHz Direct Conversion Quadrature Demodulator	21.5dBm IIP3, Integrated LO Quadrature Generator
LT5517	40MHz to 900MHz Quadrature Demodulator	21dBm IIP3, Integrated LO Quadrature Generator
LT5519	0.7 GHz to 1.4GHz High Linearity Upconverting Mixer	17.1 dBm IIP3 at 1GHz, Integrated RF Output Transformer with 50Ω Matching, Single-Ended LO and RF Ports Operation
LT5520	1.3GHz to 2.3GHz High Linearity Upconverting Mixer	15.9 dBm IIP3 at 1.9 GHz , Integrated RF Output Transformer with 50Ω Matching, Single-Ended LO and RF Ports Operation
LT5522	600MHz to 2.7GHz High Signal Level Downconverting Mixer	4.5 V to 5.25 V Supply, 25 dBm IIP3 at $900 \mathrm{MHz}, \mathrm{NF}=12.5 \mathrm{~dB}$, 50Ω Single-Ended RF and LO Ports

RF Power Detectors

LT5504	800MHz to 2.7GHz RF Measuring Receiver	80 dB Dynamic Range, Temperature Compensated, 2.7 V to 5.25 V Supply
LTC ${ }^{\text {}} 5505$	RF Power Detectors with >40dB Dynamic Range	300 MHz to 3GHz, Temperature Compensated, 2.7V to 6V Supply
LTC5507	100 kHz to 1000MHz RF Power Detector	100 kHz to 1GHz, Temperature Compensated, 2.7V to 6V Supply
LTC5508	300 MHz to 7GHz RF Power Detector	44 dB Dynamic Range, Temperature Compensated, SC70 Package
LTC5509	300 MHz to 3 GHz RF Power Detector	36 dB Linear Dynamic Range, Low Power Consumption, SC70 Package
LTC5530	300 MHz to 7 GHz Precision RF Power Detector	Precision Vout Offset Control, Shutdown, Adjustable Gain
LTC5531	300 MHz to 7GHz Precision RF Power Detector	Precision Vout Offset Control, Shutdown, Adjustable Offset
LTC5532	300 MHz to 7 GHz Precision RF Power Detector	Precision Vout Offset Control, Adjustable Gain and Offset
LT5534	50 MHz to 3GHz RF Power Detector	60 dB Dynamic Range, Temperature Compensated, SC70 Package

Low Voltage RF Building Blocks

LT5500	1.8GHz to 2.7GHz Receiver Front End	1.8V to 5.25V Supply, Dual-Gain LNA, Mixer, L0 Buffer
LT5502	400MHz Quadrature IF Demodulator with RSSI	1.8 V to 5.25 V Supply, 70 MHz to 400 MHz IF, 84 dB Limiting Gain, 90dB RSSI Range
LT5503	1.2 GHz to 2.7GHz Direct IQ Modulator and Upconverting Mixer	1.8 V to 5.25 V Supply, Four-Step RF Power Control, 120MHz Modulation Bandwidth
LT5506	500MHz Quadrature IF Demodulator with VGA	1.8V to 5.25V Supply, 40MHz to 500 MHz IF, -4 dB to 57 dB Linear Power Gain, 8.8MHz Baseband Bandwidth
LT5546	500MHz Ouadrature IF Demodulator with VGA and 17MHz Baseband Bandwidth	17 MHz Baseband Bandwidth, 40 MHz to 500 MHz IF, 1.8 V to 5.25 V Supply, -7dB to 56dB Linear Power Gain
RF Power Controllers		
LTC1757A	RF Power Controller	Multiband GSM/DCS/GPRS Mobile Phones
LTC1758	RF Power Controller	Multiband GSM/DCS/GPRS Mobile Phones
LTC1957	RF Power Controller	Multiband GSM/DCS/GPRS Mobile Phones
LTC4400	SOT-23 RF PA Controller	Multiband GSM/DCS/GPRS Phones, 45dB Dynamic Range, 450kHz Loop BW
LTC4401	SOT-23 RF PA Controller	Multiband GSM/DCS/GPRS Phones, 45dB Dynamic Range, 250kHz Loop BW
LTC4403	RF Power Controller for EDGE/TDMA	Multiband GSM/GPRS/EDGE Mobile Phones

